Department of Computer Science and Technology

Technical reports

Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 7)

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, David Chisnall, Brooks Davis, Nathaniel Wesley Filardo, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell, Stacey Son, Hongyan Xia

October 2018, 496 pages

Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government. Additional support was received from St John’s College Cambridge, the Google SOAAP Focused Research Award, a Google Chrome University Research Program Award, the RCUK’s Horizon Digital Economy Research Hub Grant (EP/G065802/1), the EPSRC REMS Programme Grant (EP/K008528/1), the EPSRC Impact Acceleration Account (EP/K503757/1), the EPSRC IOSEC grant (EP/EP/R012458/1), the ERC Advanced Grant ELVER (789108), the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google DeepMind, HP Enterprise, and a Gates Cambridge Scholarship.


This technical report describes CHERI ISAv7, the seventh version of the Capability Hardware Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA) being developed by SRI International and the University of Cambridge. This design captures nine years of research, development, experimentation, refinement, formal analysis, and validation through hardware and software implementation. CHERI ISAv7 is a substantial enhancement to prior ISA versions. We differentiate an architecture-neutral protection model vs. architecture-specific instantiations in 64-bit MIPS, 64-bit RISC-V, and x86-64. We have defined a new CHERI Concentrate compression model. CHERI-RISC-V is more substantially elaborated. A new compartment-ID register assists in resisting microarchitectural side-channel attacks. Experimental features include linear capabilities, capability coloring, temporal memory safety, and 64-bit capabilities for 32-bit architectures.

CHERI is a hybrid capability-system architecture that adds new capability-system primitives to commodity 64-bit RISC ISAs, enabling software to efficiently implement fine-grained memory protection and scalable software compartmentalization. Design goals include incremental adoptability within current ISAs and software stacks, low performance overhead for memory protection, significant performance improvements for software compartmentalization, formal grounding, and programmer-friendly underpinnings. We have focused on providing strong, non-probabilistic, efficient architectural foundations for the principles of least privilege and intentional use in the execution of software at multiple levels of abstraction, preventing and mitigating vulnerabilities.

The CHERI system architecture purposefully addresses known performance and robustness gaps in commodity ISAs that hinder the adoption of more secure programming models centered around the principle of least privilege. To this end, CHERI blends traditional paged virtual memory with an in-address-space capability model that includes capability registers, capability instructions, and tagged memory. CHERI builds on the C-language fat-pointer literature: its capabilities can describe fine-grained regions of memory, and can be substituted for data or code pointers in generated code, protecting data and also improving control-flow robustness. Strong capability integrity and monotonicity properties allow the CHERI model to express a variety of protection properties, from enforcing valid C-language pointer provenance and bounds checking to implementing the isolation and controlled communication structures required for software compartmentalization.

CHERI’s hybrid capability-system approach, inspired by the Capsicum security model, allows incremental adoption of capability-oriented design: software implementations that are more robust and resilient can be deployed where they are most needed, while leaving less critical software largely unmodified, but nevertheless suitably constrained to be incapable of having adverse effects. Potential deployment scenarios include low-level software Trusted Computing Bases (TCBs) such as separation kernels, hypervisors, and operating-system kernels, as well as userspace TCBs such as language runtimes and web browsers. We also see potential early-use scenarios around particularly high-risk software libraries (such as data compression, protocol parsing, and image processing), which are concentrations of both complex and historically vulnerability-prone code exposed to untrustworthy data sources, while leaving containing applications unchanged.

Full text

PDF (10.5 MB)

BibTeX record

  author =	 {Watson, Robert N. M. and Neumann, Peter G. and Woodruff,
          	  Jonathan and Roe, Michael and Almatary, Hesham and
          	  Anderson, Jonathan and Baldwin, John and Chisnall, David
          	  and Davis, Brooks and Filardo, Nathaniel Wesley and
          	  Joannou, Alexandre and Laurie, Ben and Markettos, A.
          	  Theodore and Moore, Simon W. and Murdoch, Steven J. and
          	  Nienhuis, Kyndylan and Norton, Robert and Richardson, Alex
          	  and Rugg, Peter and Sewell, Peter and Son, Stacey and Xia,
  title = 	 {{Capability Hardware Enhanced RISC Instructions: CHERI
         	   Instruction-Set Architecture (Version 7)}},
  year = 	 2018,
  month = 	 oct,
  url = 	 {},
  institution =  {University of Cambridge, Computer Laboratory},
  number = 	 {UCAM-CL-TR-927}