CminorPrime: for the correctness proof of the instruction
selection phase (in Selection.v and SelectOp.v), we introduce a
new semantics for Cminor. This CminorP.cmp_step semantics is
inductive on expressions; it is a predicate over pairs of states and
"trace steps", the lists of events that can be followed from one to
the other. The fact that it is inductive on expression structure (in
contrast to the small-step semantics for expressions we use in earlier
phases) makes it straightforward to adapt the CompCert
SelectOpproof.v.
However, this does necessitate some plumbing, as outlined below, to
relate the trace-step result to the earlier small-step semantics. We
do this by identifying the "clean" Cminor states, those without
expression or value continuations; CminorP trace-step transitions
correspond essentially to sequences of Cminor transitions between
clean states.
Require Import Coqlib.
Require Import Libtactics.
Require Import Maps.
Require Import Ast.
Require Import Integers.
Require Import Floats.
Require Import Pointers.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Cminor.
Require Import Op.
Require Import SelectOp.
Require Import Cminorops.
Require Import Switch.
Section RELSEM.
Variable ge:
Cminor.genv.
Proof structure from Cminor to CminorSel, and from CminorSel to RTL
The vertical arrows indicate forwards per-thread simulations of some kind.
From Cminor to CminorSel...
Cminor.cm_step . .
(small-step with expression |(5) |(6)
continuations) | |
v |
CminorP.small_step_cm . . |
(constructed small-step built |(4) |
from CminorP.cm_via_unclean) | |
| |
CminorP.cm_via_unclean . . | |
(sequences of Cminor.cm_step's |(2) |(3) | |
to clean states, with weakcons) | | | |
v | | |
CminorP.cmp_step . | | |
(trace steps, inductive |(1) | | |
on expressions) | | | |
v v | |
CminorSel.step . . | | .
(trace steps, inductive | | |(7)
on expressions) | | |
v v |
Selectionproof.small_step_cs . . | .
(constructed receptive small-step built | |(8)
from CminorSel.step) | |
(same as RTLgenproof.small_step_cs) | |
| |
...and from CminorSel to RTL | |
| |
v |
RTL.rtl_trace / rtl_trace_plus . |
(sequences of RTL.rtl_step's) |
(built with weakcons) |
v
RTL.rtl_step .
(small-step)
Cminor to CminorSel
(1) Selectionproof.sel_step_correct (this is the real work of the
selection proof, using many lemmas in SelectOpproof about the
CminorSel
eval_expr, making heavy use of its inductive-on-expressions nature)
(2)
CminorP.cmp_step_correct
(3)
Selectionproof.cmp_step_correct_foo (just gluing (1) and (2))
(4)
Selectionproof.cmp_small_step_correct (just lifting (3) to the
constructed small-step relations)
(5)
CminorP.cm_small_step_correct below, using added
cm_ev_stuck disjunct on the rhs of the simulation.
(6)
Selectionproof.small_step_correct_all, gluing together (5) and (4).
Some measuring is also needed here, as this step erases some
taus. (3) is on-the-nose for trace steps, and the trace-step
semantics have no taus:
CminorP.cm_via_unclean
CminorP.cmp_step
CminorSel.step
The two constructions of a small-step (small_step and
small_step_Recep, below) introduce taus only for nil trace steps.
Moreover, (4) is on the nose (a strong simulation), so the only
measuring required is that for (5), and it should be routine to lift
that to the composition (6) of (4) and (5).
CminorSel to RTL
(7)
RTLgenproof.transl_step_correct, from
CminorSel.step to
RTL.rtl_trace/
RTL.rtl_trace_plus.
(8)
RTLgenproof.fwsim, lifting (7) to the constructed small-step
relation for CminorSel and the original
rtl_step.
Definition clean (
st :
state) :
bool :=
match st with
|
SKexpr _ _ _ _ =>
false
|
SKval _ _ _ _ =>
false
|
SKstmt _ _ _ _ =>
true
|
SKcall _ _ =>
true
|
SKexternal _ _ =>
true
|
SKreturn _ _ =>
true
end.
Measure for Cminor.cm_step
We want measures for two purposes: to prove stuck_or_via below, and to
build a measured forwards simulation from Cminor.cm_step to
Selectionproof.small_step_cs.
Upper bound on the number of transitions to completely reduce
SKexpr e ... to its ultimate SKval ...
Fixpoint measure_expr (
e0 :
expr) {
struct e0 } :
nat :=
match e0 with
|
Evar _ => 1%
nat
|
Econst _ => 1%
nat
|
Eunop _ e => (2+
measure_expr e)%
nat
|
Ebinop _ e1 e2 => (3+
measure_expr e1+
measure_expr e2)%
nat
|
Eload _ e => (2+
measure_expr e)%
nat
|
Econdition e1 e2 e3 => (2+
measure_expr e1 +
measure_expr e2 +
measure_expr e3)%
nat
end.
Fixpoint measure_list_expr (
es0 :
list expr) {
struct es0 } :
nat :=
match es0 with
|
nil => (0)%
nat
|
e ::
es => (2 +
measure_expr e +
measure_list_expr es )%
nat
end.
Fixpoint measure_stmt (
s0 :
stmt) :
nat :=
(
match s0 with
|
Sskip => 0
|
Sassign id e => 2 +
measure_expr e
|
Sstore _ e1 e2 => 3 +
measure_expr e1 +
measure_expr e2
|
Scall _ _ e es => 2 +
measure_expr e +
measure_list_expr es
|
Sseq s1 s2 => 0
|
Sifthenelse e s1 s2 => 2 +
measure_expr e +
measure_stmt s1 +
measure_stmt s2
|
Sloop s => 0
|
Sblock s => 0
|
Sexit _ => 0
|
Sswitch e _ _ => 2 +
measure_expr e
|
Sreturn (
Some e) => 2 +
measure_expr e
|
Sreturn None => 0
|
Slabel _ s => 0
|
Sgoto _ => 0
|
Sthread_create e1 e2 => 3 +
measure_expr e1 +
measure_expr e2
|
Satomic _ _ es => 1 +
measure_list_expr es
|
Smfence => 0
end)%
nat.
Fixpoint measure_expr_cont (
ek0 :
expr_cont) {
struct ek0 } :
nat :=
(
match ek0 with
|
EKunop _ ek => 1 +
measure_expr_cont ek
|
EKbinop1 _ e2 ek => 2 +
measure_expr e2 +
measure_expr_cont ek
|
EKbinop2 _ v ek => 1 +
measure_expr_cont ek
|
EKload _ ek => 1 +
measure_expr_cont ek
|
EKcall _ _ es k => 1 +
measure_list_expr es
|
EKargs _ v _ es vs k => 1 +
measure_list_expr es
|
EKatargs _ _ es _ _ => 2 +
measure_list_expr es
|
EKcond e1 e2 ek => 1 +
measure_expr e1+
measure_expr e2+
measure_expr_cont ek
|
EKassign _ k => 1
|
EKthread1 e k => 2 +
measure_expr e
|
EKthread2 _ k => 1
|
EKcondstmt s1 s2 k => 1 +
measure_stmt s1 +
measure_stmt s2
|
EKswitch cases default k => 1
|
EKreturn k => 1
|
EKstoreaddr _ e k => 2 +
measure_expr e
|
EKstoreval _ v k => 1
end)%
nat.
Definition measure (
st0:
Cminor.state) :
nat :=
(
match st0 with
|
SKexpr e _ _ ek =>
measure_expr e +
measure_expr_cont ek
|
SKval v _ _ ek =>
measure_expr_cont ek
|
SKstmt s _ _ k =>
measure_stmt s
|
SKcall args k => 0
|
SKexternal efsig k => 0
|
SKreturn v k => 0
end)%
nat.
The two important properties that measures satisfy:
Lemma decreasing_measure_from_unclean:
forall st te st' (
UC:
clean st =
false) (
TRAN:
cm_step ge st te st'),
(
measure st' <
measure st)%
nat.
Proof.
intros; (cm_step_cases (destruct TRAN) Case);
try (by simpl; omega);
try (by (simpl; unfold clean in UC; done)).
Qed.
Lemma decreasing_measure_to_unclean:
forall st te st' (
UC:
clean st' =
false) (
TRAN:
cm_step ge st te st'),
(
measure st' <
measure st)%
nat.
Proof.
intros; (cm_step_cases (destruct TRAN) Case);
try (by simpl; omega);
try (by (simpl; unfold clean in UC; done)).
Qed.
CminorP semantics
Section CMINOR_EVAL_EXPR.
Variable sp:
option Pointers.pointer.
Variable e:
env.
Evaluation of an expression: cmp_eval_expr ge sp env t e v
states that expression e evaluates to value v.
ge is the global environment, env the local environment,
and t the list of memory reads (replacing the CompCert-1.5 m, the current memory state). All except t are unchanged during expression evaluation.
sp is the pointer to the memory block allocated for this function
(stack frame).
Inductive cmp_eval_expr:
list thread_event ->
Cminor.expr ->
val ->
Prop :=
|
eval_Evar:
forall id v
(
EVAL :
PTree.get id e =
Some v),
cmp_eval_expr nil (
Cminor.Evar id)
v
|
eval_Econst:
forall cst v
(
EC :
eval_constant ge sp cst =
Some v),
cmp_eval_expr nil (
Cminor.Econst cst)
v
|
eval_Eunop:
forall op t1 a1 v1 v
(
EE :
cmp_eval_expr t1 a1 v1)
(
EU :
eval_unop op v1 =
Some v),
cmp_eval_expr t1 (
Cminor.Eunop op a1)
v
|
eval_Ebinop:
forall op t1 t2 t a1 a2 v1 v2 v
(
EE1 :
cmp_eval_expr t1 a1 v1)
(
EE2 :
cmp_eval_expr t2 a2 v2)
(
EB :
eval_binop op v1 v2 =
Some v)
(
TT :
t =
t1++
t2),
cmp_eval_expr t (
Cminor.Ebinop op a1 a2)
v
|
eval_Eload:
forall c taddr addr p v t
(
EE :
cmp_eval_expr taddr addr (
Vptr p))
(
HT :
Val.has_type v (
type_of_chunk c))
(
TT :
t =
taddr++((
TEmem(
MEread p c v)) ::
nil)),
cmp_eval_expr t (
Cminor.Eload c addr)
v
|
eval_Econdition:
forall t1 t a1 a2 a3 v1 b1 v t'
(
EE1 :
cmp_eval_expr t1 a1 v1)
(
EB :
Val.bool_of_val v1 b1)
(
EE :
cmp_eval_expr t (
if b1 then a2 else a3)
v)
(
TT :
t' =
t1++
t),
cmp_eval_expr t' (
Cminor.Econdition a1 a2 a3)
v.
Inductive cmp_eval_exprlist:
list thread_event ->
list Cminor.expr ->
list val ->
Prop :=
|
eval_Enil:
cmp_eval_exprlist nil nil nil
|
eval_Econs:
forall t1 tl a1 al v1 vl t
(
EE :
cmp_eval_expr t1 a1 v1)
(
ES :
cmp_eval_exprlist tl al vl)
(
TT :
t =
t1++
tl),
cmp_eval_exprlist t (
a1 ::
al) (
v1 ::
vl).
End CMINOR_EVAL_EXPR.
Definition weakcons (
lab:
thread_event) (
t:
list thread_event) :
list thread_event :=
match lab with
|
TEtau =>
t
|
_ =>
lab::
t
end.
Inductive cmp_step :
state ->
list thread_event ->
state ->
Prop :=
|
PStepSkipBlock:
forall sp k env,
cmp_step (
SKstmt Sskip sp env (
Kblock k))
nil
(
SKstmt Sskip sp env k)
|
PStepAssign:
forall sp v id e env env'
k t
(
E:
cmp_eval_expr sp env t e v)
(
VLS :
PTree.set id v env =
env'),
cmp_step (
SKstmt (
Sassign id e)
sp env k)
t
(
SKstmt Sskip sp env'
k)
|
PStepStore:
forall sp chunk e1 e2 env k t1 t2 lab ptr v
(
E1:
cmp_eval_expr sp env t1 e1 (
Vptr ptr))
(
E2:
cmp_eval_expr sp env t2 e2 v)
(
LAB:
lab =
TEmem (
MEwrite ptr chunk (
cast_value_to_chunk chunk v))),
cmp_step (
SKstmt (
Sstore chunk e1 e2)
sp env k)
(
t1 ++
t2 ++ (
lab::
nil))
(
SKstmt Sskip sp env k)
|
PStepCall:
forall optid sig ef args sp env k fd tf vf targs vargs t
(
EF:
cmp_eval_expr sp env tf ef vf)
(
ES :
cmp_eval_exprlist sp env targs args vargs)
(
TEQ :
t =
tf ++
targs)
(
GFF :
Genv.find_funct ge vf =
Some fd)
(
FSIG :
funsig fd =
sig),
cmp_step (
SKstmt (
Scall optid sig ef args)
sp env k)
t
(
SKcall vargs (
Kcall optid fd sp env k))
|
PStepAtomicNone:
forall sp env k targs args vargs p rmwi v'
t astmt
(
ES :
cmp_eval_exprlist sp env targs args vargs)
(
AS :
Cminorops.sem_atomic_statement astmt vargs =
Some (
p,
rmwi))
(
TY :
Val.has_type v' (
type_of_chunk Mint32))
(
Et :
t =
targs ++ (
TEmem (
MErmw p Mint32 v'
rmwi)) ::
nil),
cmp_step (
SKstmt (
Satomic None astmt args)
sp env k)
t
(
SKstmt Sskip sp env k)
|
PStepAtomicSome:
forall sp env k targs args vargs p rmwi v'
t astmt id env'
(
ES :
cmp_eval_exprlist sp env targs args vargs)
(
AS :
Cminorops.sem_atomic_statement astmt vargs =
Some (
p,
rmwi))
(
TY :
Val.has_type v' (
type_of_chunk Mint32))
(
Ee :
PTree.set id v'
env =
env')
(
Et :
t=
targs ++ (
TEmem (
MErmw p Mint32 v'
rmwi)) ::
nil),
cmp_step (
SKstmt (
Satomic (
Some id)
astmt args)
sp env k)
t
(
SKstmt Sskip sp env'
k)
|
PStepFence:
forall sp k env,
cmp_step (
SKstmt Smfence sp env k)
(
TEmem MEfence ::
nil)
(
SKstmt Sskip sp env k)
|
PStepSeq:
forall sp s1 s2 env k,
cmp_step (
SKstmt (
Sseq s1 s2)
sp env k)
nil
(
SKstmt s1 sp env (
Kseq s2 k))
|
PStepCond:
forall sp e s1 s2 env k t v b
(
E:
cmp_eval_expr sp env t e v)
(
BOV :
Val.bool_of_val v b),
cmp_step (
SKstmt (
Sifthenelse e s1 s2)
sp env k)
t
(
SKstmt (
if b then s1 else s2)
sp env k)
|
PStepLoop:
forall sp s env k,
cmp_step (
SKstmt (
Sloop s)
sp env k)
nil
(
SKstmt s sp env (
Kseq (
Sloop s)
k))
|
PStepBlock:
forall sp s env k,
cmp_step (
SKstmt (
Sblock s)
sp env k)
nil
(
SKstmt s sp env (
Kblock k))
|
PStepExitSeq:
forall sp n s k env,
cmp_step (
SKstmt (
Sexit n)
sp env (
Kseq s k))
nil
(
SKstmt (
Sexit n)
sp env k)
|
PStepExitBlock:
forall sp env k,
cmp_step (
SKstmt (
Sexit 0)
sp env (
Kblock k))
nil
(
SKstmt Sskip sp env k)
|
PStepExitBlock1:
forall sp n env k,
cmp_step (
SKstmt (
Sexit (
S n))
sp env (
Kblock k))
nil
(
SKstmt (
Sexit n)
sp env k)
|
PStepSwitch:
forall sp e cases default env k t n
(
E:
cmp_eval_expr sp env t e (
Vint n)),
cmp_step (
SKstmt (
Sswitch e cases default)
sp env k)
t
(
SKstmt (
Sexit (
switch_target n default cases))
sp env k)
|
PStepLabel:
forall sp lbl s env k,
cmp_step (
SKstmt (
Slabel lbl s)
sp env k)
nil
(
SKstmt s sp env k)
|
PStepGoto:
forall sp f lbl k s'
k'
k''
env
(
CC :
call_cont k =
k')
(
GFD :
get_fundef k' = (
Some (
Internal f)))
(
FL :
find_label lbl f.(
fn_body)
k' =
Some (
s',
k'')),
cmp_step (
SKstmt (
Sgoto lbl)
sp env k)
nil
(
SKstmt s'
sp env k'')
|
PStepReturnNone:
forall sp sp'
f k k'
env env'
lab t
(
CC :
call_cont k = (
Kcall None (
Internal f)
sp'
env'
k'))
(
FSIG :
f.(
fn_sig).(
sig_res) =
None)
(
LAB:
lab = (
match sp with
None =>
TEtau |
Some stk =>
TEmem (
MEfree stk MObjStack)
end))
(
TEQ:
t =
weakcons lab nil),
cmp_step (
SKstmt (
Sreturn None)
sp env k)
t
(
SKreturn Vundef k)
|
PStepReturnSome:
forall sp e f k env v t t'
lab
(
CC :
get_fundef (
call_cont k) =
Some (
Internal f))
(
FSIG :
f.(
fn_sig).(
sig_res) <>
None)
(
EE :
cmp_eval_expr sp env t e v)
(
LAB:
lab = (
match sp with
None =>
TEtau |
Some stk =>
TEmem (
MEfree stk MObjStack)
end))
(
TEQ:
t' = (
t++(
weakcons lab nil))),
cmp_step (
SKstmt (
Sreturn (
Some e))
sp env k)
t'
(
SKreturn v k)
|
PStepReturnFinish:
forall sp v fd optid k k'
env'
env''
(
CC :
call_cont k = (
Kcall optid fd sp env'
k'))
(
VLS :
set_optvar optid v env' =
env''),
cmp_step (
SKreturn v k)
nil
(
SKstmt Sskip sp env''
k')
|
PStepFunctionInternalNoStack:
forall sp optid f vs k env env'
ck
(
CC :
ck = (
Kcall optid (
Internal f)
sp env'
k))
(
FZ :
f.(
fn_stackspace) = 0)
(
INIT :
set_locals f.(
fn_vars) (
set_params vs f.(
fn_params)) =
env),
cmp_step (
SKcall vs ck)
nil
(
SKstmt f.(
fn_body)
None env ck)
|
PStepFunctionInternalWithStack:
forall sp optid p f vs k env env'
ck fsize
(
CC :
ck = (
Kcall optid (
Internal f)
sp env'
k))
(
EQfsize :
fsize =
f.(
fn_stackspace))
(
FNZ :
fsize <> 0)
(
INIT :
set_locals f.(
fn_vars) (
set_params vs f.(
fn_params)) =
env),
cmp_step (
SKcall vs ck)
((
TEmem (
MEalloc p (
Int.repr fsize)
MObjStack))::
nil)
(
SKstmt f.(
fn_body) (
Some p)
env ck)
|
PStepExternalCall:
forall sp k ef vargs evargs tgt env id efsig ck
(
EARGS :
vargs =
map val_of_eval evargs),
id =
ef.(
ef_id) ->
efsig =
ef.(
ef_sig) ->
ck = (
Kcall tgt (
External ef)
sp env k) ->
cmp_step (
SKcall vargs ck)
((
TEext (
Ecall id evargs))::
nil)
(
SKexternal efsig ck)
|
PStepExternalReturn:
forall efsig vres evres k typ
(
TYP :
typ = (
match sig_res efsig with Some x =>
x |
None =>
Tint end))
(
HT :
Val.has_type vres typ)
(
ERES :
vres =
val_of_eval evres),
cmp_step (
SKexternal efsig k)
((
TEext (
Ereturn typ evres))::
nil)
(
SKreturn vres k)
|
PStepNext:
forall sp s k env,
cmp_step (
SKstmt Sskip sp env (
Kseq s k))
nil
(
SKstmt s sp env k)
|
PStepStop:
forall sp env,
cmp_step (
SKstmt Sskip sp env Kstop)
(
TEexit::
nil)
(
SKstmt Sskip sp env Kstop)
|
PStepThread :
forall sp efn earg k env v p tfn targ t
(
EFN:
cmp_eval_expr sp env tfn efn (
Vptr p))
(
EARG:
cmp_eval_expr sp env targ earg v)
(
TEQ:
t =
tfn ++
targ ++ ((
TEstart p (
v::
nil))::
nil)),
cmp_step (
SKstmt (
Sthread_create efn earg)
sp env k)
t
(
SKstmt Sskip sp env k).
Section CMP_ISTEP_EXPR_CONT.
Variable sp :
option pointer.
Variable env:
env.
Inductive cmp_istep_expr_cont (
v:
val) :
expr_cont ->
list thread_event ->
state ->
Prop :=
|
IStep_EKunop :
forall op v'
k tr sr
(
EU :
eval_unop op v =
Some v')
(
REST :
cmp_istep_expr_cont v'
k tr sr),
cmp_istep_expr_cont v (
EKunop op k)
tr sr
|
IStep_EKbinop1 :
forall op e2 k t2 v2 v'
tr sr
(
EE2 :
cmp_eval_expr sp env t2 e2 v2)
(
EB :
eval_binop op v v2 =
Some v')
(
REST :
cmp_istep_expr_cont v'
k tr sr),
cmp_istep_expr_cont v (
EKbinop1 op e2 k) (
t2++
tr)
sr
|
IStep_EKbinop2 :
forall op v1 k v'
tr sr
(
EB :
eval_binop op v1 v =
Some v')
(
REST :
cmp_istep_expr_cont v'
k tr sr),
cmp_istep_expr_cont v (
EKbinop2 op v1 k)
tr sr
|
IStep_EKload :
forall c k p v'
tr sr
(
VEQP:
v =
Vptr p)
(
HT :
Val.has_type v' (
type_of_chunk c))
(
REST :
cmp_istep_expr_cont v'
k tr sr),
cmp_istep_expr_cont v (
EKload c k) ((
TEmem(
MEread p c v')) ::
tr)
sr
|
IStep_EKcall :
forall fd sig optid k args vs t
(
GFF :
Genv.find_funct ge v =
Some fd)
(
ES :
cmp_eval_exprlist sp env t args vs)
(
FSIG :
funsig fd =
sig),
cmp_istep_expr_cont v (
EKcall optid sig args k)
t (
SKcall vs (
Kcall optid fd sp env k))
|
IStep_EKargs :
forall vs vf fd optid k args vs'
t vs''
sig
(
GFF:
Genv.find_funct ge vf =
Some fd)
(
ES :
cmp_eval_exprlist sp env t args vs')
(
VSEQ :
vs'' =
vs ++ (
v ::
vs'))
(
FSIG :
funsig fd =
sig),
cmp_istep_expr_cont v (
EKargs optid vf sig args vs k)
t (
SKcall vs'' (
Kcall optid fd sp env k))
|
IStep_EKatargsNone :
forall vs k vs'
t vs''
rmwi v'
p astmt args t'
(
ES :
cmp_eval_exprlist sp env t args vs')
(
VSEQ :
vs'' =
vs ++ (
v ::
vs'))
(
TY :
Val.has_type v' (
type_of_chunk Mint32))
(
ASTMT :
Cminorops.sem_atomic_statement astmt vs'' =
Some (
p,
rmwi))
(
Et' :
t' =
t ++ (
TEmem (
MErmw p Mint32 v'
rmwi)) ::
nil),
cmp_istep_expr_cont v (
EKatargs None astmt args vs k)
t' (
SKstmt Sskip sp env k)
|
IStep_EKatargsSome :
forall vs k vs'
t vs''
rmwi v'
p astmt args env'
id t'
(
ES :
cmp_eval_exprlist sp env t args vs')
(
VSEQ :
vs'' =
vs ++ (
v ::
vs'))
(
TY :
Val.has_type v' (
type_of_chunk Mint32))
(
ASTMT :
Cminorops.sem_atomic_statement astmt vs'' =
Some (
p,
rmwi))
(
NE :
env' =
env !
id <-
v')
(
Et' :
t' =
t ++ (
TEmem (
MErmw p Mint32 v'
rmwi)) ::
nil),
cmp_istep_expr_cont v (
EKatargs (
Some id)
astmt args vs k)
t' (
SKstmt Sskip sp env'
k)
|
IStep_EKcond :
forall e2 e3 k t tr sr b1 v'
(
EB :
Val.bool_of_val v b1)
(
EE :
cmp_eval_expr sp env t (
if b1 then e2 else e3)
v')
(
REST :
cmp_istep_expr_cont v'
k tr sr),
cmp_istep_expr_cont v (
EKcond e2 e3 k) (
t++
tr)
sr
|
IStep_EKassign :
forall id env'
k
(
VLS :
PTree.set id v env =
env'),
cmp_istep_expr_cont v (
EKassign id k)
nil (
SKstmt Sskip sp env'
k)
|
IStep_EKthread1 :
forall earg k targ v'
p
(
VEQP:
v =
Vptr p)
(
EARG:
cmp_eval_expr sp env targ earg v'),
cmp_istep_expr_cont v (
EKthread1 earg k)
(
targ ++ ((
TEstart p (
v'::
nil))::
nil))
(
SKstmt Sskip sp env k)
|
IStep_EKthread2 :
forall p k,
cmp_istep_expr_cont v (
EKthread2 p k)
(((
TEstart p (
v::
nil))::
nil))
(
SKstmt Sskip sp env k)
|
IStep_EKcondstmt :
forall s1 s2 k b s
(
BOV :
Val.bool_of_val v b)
(
SEQ :
s = (
if b then s1 else s2)),
cmp_istep_expr_cont v (
EKcondstmt s1 s2 k)
nil (
SKstmt s sp env k)
|
IStep_EKswitch :
forall cases default k n
(
VEQN:
v =
Vint n),
cmp_istep_expr_cont v (
EKswitch cases default k)
nil (
SKstmt (
Sexit (
switch_target n default cases))
sp env k)
|
IStep_EKreturn :
forall k t
(
LAB:
t = (
match sp with
None =>
nil |
Some stk => (
TEmem (
MEfree stk MObjStack)::
nil)
end)),
cmp_istep_expr_cont v (
EKreturn k)
t
(
SKreturn v k)
|
IStep_EKstoreaddr :
forall chunk e2 k t2 lab ptr v'
(
VEQP:
v =
Vptr ptr)
(
E2:
cmp_eval_expr sp env t2 e2 v')
(
LAB:
lab =
TEmem (
MEwrite ptr chunk (
cast_value_to_chunk chunk v'))),
cmp_istep_expr_cont v (
EKstoreaddr chunk e2 k) (
t2 ++ (
lab::
nil)) (
SKstmt Sskip sp env k)
|
IStep_EKstoreval :
forall chunk ptr k lab
(
LAB:
lab =
TEmem (
MEwrite ptr chunk (
cast_value_to_chunk chunk v))),
cmp_istep_expr_cont v (
EKstoreval chunk (
Vptr ptr)
k) (
lab::
nil) (
SKstmt Sskip sp env k)
.
End CMP_ISTEP_EXPR_CONT.
Inductive cmp_istep :
state ->
list thread_event ->
state ->
Prop :=
|
Istep_SKexpr :
forall sp env e ek te v tek t'
s'
(
E:
cmp_eval_expr sp env te e v)
(
EK:
cmp_istep_expr_cont sp env v ek tek s')
(
TT:
t'=
te++
tek),
cmp_istep (
SKexpr e sp env ek)
t'
s'
|
Istep_SKval :
forall sp env ek v tek s'
(
EK:
cmp_istep_expr_cont sp env v ek tek s'),
cmp_istep (
SKval v sp env ek)
tek s'
|
Istep_clean :
forall s
(
CL :
clean s),
cmp_istep s nil s.
Lemma bool_of_val_functional:
forall v'
b'
b'',
Val.bool_of_val v'
b' ->
Val.bool_of_val v'
b'' ->
b'=
b''.
Proof.
by inversion 1; clarify; inversion 1; clarify.
Qed.
Ltac step_correct_dtac :=
match goal with
H :
cmp_eval_expr _ _ _ (?
X _)
_ |-
_ =>
inv H
end.
Lemma app_nil_end2 :
forall (
A:
Type) (
l:
list A),
nil ++
l =
l.
Proof.
done. Qed.
Lemma step_correct_unclean:
forall st1 (
t:
list thread_event)
lab st2
(
UC:
clean st1 =
false)
(
T:
Cminor.cm_step ge st1 lab st2),
(
forall t st,
cmp_istep st2 t st <->
cmp_istep st1 (
weakcons lab t)
st).
Proof.
intros;
unfold weakcons.
(
cm_step_cases (
destruct T)
Case);
simpl in *;
try done;
first [
Case "
StepReturnSome1";
destruct sp |
idtac];
split;
inversion 1;
clarify;
vauto;
try (
by inv EK;
vauto).
Case "
StepVar".
-
by repeat step_correct_dtac;
econstructor;
clarify'.
-
by repeat step_correct_dtac;
econstructor;
clarify'.
Case "
StepUnop1".
-
by inv E;
vauto.
Case "
StepUnop".
-
change Cminor.eval_unop with eval_unop in EU.
by inv EK;
clarify';
vauto.
Case "
StepBinop1".
-
by inv EK;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
-
by inv E;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
Case "
StepBinop".
-
change Cminor.eval_binop with eval_binop in EB.
by inv EK;
clarify';
vauto.
Case "
StepLoad1".
-
by inv EK;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
-
by inv E;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
Case "
StepIfThenElse".
-
by inv EK;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
-
by inv E;
econstructor;
try edone;
vauto;
rewrite -> ?
app_ass.
Case "
StepIfThenElseTrue".
-
by inv EK;
assert (
b1=
true); [
eby eapply bool_of_val_functional|
vauto].
Case "
StepIfThenElseFalse".
-
by inv EK;
assert (
b1=
false); [
eby eapply bool_of_val_functional|
vauto].
Case "
StepEmptyCall".
-
by repeat step_correct_dtac;
econstructor;
try edone;
vauto;
clarify'.
-
by inv EK;
try done;
inv ES;
clarify';
vauto.
Case "
StepCallArgs1".
-
by inv EK;
rewrite -> ?
app_ass, <- ?
app_nil_end, ?
app_nil_end2;
econstructor;
vauto.
-
inv EK;
inv ES;
vauto.
Case "
StepCallArgs2".
-
by inv EK;
rewrite -> ?
app_ass, <- ?
app_nil_end, ?
app_nil_end2;
econstructor;
vauto.
-
inv EK;
inv ES.
econstructor;
try edone;
eapply IStep_EKargs;
try edone.
by rewrite -> ?
app_ass, <- ?
app_nil_end.
Case "
StepCallArgs".
-
by econstructor;
vauto.
-
by inv EK;
inv ES;
simpl in *;
clarify';
vauto.
Case "
StepAtomicArgs".
-
inv EK;
rewrite app_ass in ASTMT;
econstructor;
econstructor;
vauto;
try edone;
by rewrite app_ass.
-
eby inv EK;
inv ES; (
econstructor; [
edone| |
eby rewrite app_ass]);
[
eapply IStep_EKatargsNone with (
vs'' := ((
vs ++
v ::
nil) ++
v1 ::
vl))|
eapply IStep_EKatargsSome with (
vs'' := ((
vs ++
v ::
nil) ++
v1 ::
vl))];
try edone;
rewrite app_ass.
Case "
StepAtomicFinishNone".
-
by econstructor;
vauto.
-
by inv EK;
inv ES;
inv Et';
vauto.
Case "
StepAtomicFinishSome".
-
eby econstructor;
inv EK;
vauto.
-
by inv EK;
inv ES;
inv Et';
vauto.
Case "
StepCondTrue".
-
by inv EK;
replace b with true; [
vauto|
eby eapply bool_of_val_functional].
Case "
StepCondFalse".
-
by inv EK;
replace b with false; [
vauto|
eby eapply bool_of_val_functional].
Qed.
Inductive cm_via_unclean :
state ->
list thread_event ->
state ->
Prop :=
|
cm_via_unclean_one :
forall st1 st2 lab
(
CL:
clean st2)
(
CMSTEP:
Cminor.cm_step ge st1 lab st2),
cm_via_unclean st1 (
weakcons lab nil)
st2
|
cm_via_unclean_cons :
forall st1 st2 st3 lab t
(
UC:
clean st2 =
false)
(
CMSTEP:
Cminor.cm_step ge st1 lab st2)
(
VIA :
cm_via_unclean st2 t st3),
cm_via_unclean st1 (
weakcons lab t)
st3.
Tactic Notation "
cm_via_unclean_cases"
tactic(
first)
tactic(
c) :=
first; [
c "
cm_via_unclean_one" |
c "
cm_via_unclean_cons" ].
Lemma cm_via_unclean_one_tau :
forall st1 st2
(
CL:
clean st2)
(
CMSTEP:
Cminor.cm_step ge st1 TEtau st2),
cm_via_unclean st1 nil st2.
Proof.
Lemma cm_via_unclean_cons_tau :
forall st1 st2 st3 t
(
UC:
clean st2 =
false)
(
CMSTEP:
Cminor.cm_step ge st1 TEtau st2)
(
VIA :
cm_via_unclean st2 t st3),
cm_via_unclean st1 t st3.
Proof.
Lemma cm_via_unclean_one_nontau :
forall st1 st2 lab
(
CL:
clean st2)
(
CMSTEP:
Cminor.cm_step ge st1 lab st2)
(
NONTAU:
lab <>
TEtau),
cm_via_unclean st1 (
lab ::
nil)
st2.
Proof.
Lemma cm_via_unclean_cons_nontau :
forall st1 st2 st3 lab t
(
UC:
clean st2 =
false)
(
CMSTEP:
Cminor.cm_step ge st1 lab st2)
(
VIA :
cm_via_unclean st2 t st3)
(
NONTAU:
lab <>
TEtau),
cm_via_unclean st1 (
lab ::
t)
st3.
Proof.
Hint Resolve cm_via_unclean_one_tau cm_via_unclean_cons_tau.
Hint Resolve cm_via_unclean_one_nontau cm_via_unclean_cons_nontau.
Lemma via_unclean_is_to_clean:
forall st1 (
t:
list thread_event)
st2
(
VIA:
cm_via_unclean st1 t st2),
clean st2.
Proof.
by induction 1.
Qed.
Lemma cm_via_unclean_weakcons:
forall st1 te t st2 t'
(
VIA:
cm_via_unclean st1 t'
st2)
(
TT:
t'=
te::
t),
te::
t =
weakcons te t.
Proof.
induction 1; intros; destruct te; destruct lab; simpl; try done; auto.
Qed.
Lemma step_correct_unclean_forwards:
forall st1 (
t:
list thread_event)
lab st2
(
UC:
clean st1 =
false)
(
T:
Cminor.cm_step ge st1 lab st2),
(
forall t st,
cmp_istep st2 t st ->
cmp_istep st1 (
weakcons lab t)
st).
Proof.
forwards correctness of cmp_istep from unclean (and via unclean) to clean
Lemma via_unclean_cmp_istep_correct_forwards:
forall t st1 st2
(
UC:
clean st1 =
false)
(
VIA:
cm_via_unclean st1 t st2),
cmp_istep st1 t st2 .
Proof.
Correctness of cmp_step from clean (via unclean) to clean
Lemma cmp_step_correct:
forall st1 t st2
(
CL:
clean st1)
(
VIA:
cm_via_unclean st1 t st2),
cmp_step st1 t st2 .
Proof.
intros; (
cm_via_unclean_cases (
destruct VIA)
Case).
Case "
cm_via_unclean_one".
by (
cm_step_cases (
destruct CMSTEP)
SCase);
unfold weakcons;
simpl in *;
clarify;
vauto.
Case "
cm_via_unclean_cons".
(
cm_step_cases (
destruct CMSTEP)
SCase);
unfold weakcons;
simpl in *;
clarify;
first [
SCase "
StepReturnSome";
destruct sp |
idtac];
(
eapply via_unclean_cmp_istep_correct_forwards in VIA;
try done;
inv VIA;
try done;
inv EK;
vauto;
rewrite -> ?
app_ass, <- ?
app_nil_end;
vauto;
rewrite <-
app_ass;
vauto).
Qed.
Lemma cmp_step_to_clean:
forall st1 t st2 (
STEP:
cmp_step st1 t st2),
clean st2.
Proof.
induction 1; clarify. Qed.
Definition small_step_cm := (
small_step_Recep Cminor.state cm_via_unclean).
Lemma small_step_cm_intro:
forall s te s',
small_step_Recep Cminor.state cm_via_unclean s te s' ->
small_step_cm s te s'.
Proof.
done. Qed.
Definition cm_stuck s :
Prop :=
forall s'
l,
Cminor.cm_step ge s l s' ->
False.
Inductive te_read :
thread_event ->
Prop :=
te_read_read:
forall p c v,
te_read (
TEmem (
MEread p c v)).
Eventually will get stuck
Inductive cm_ev_stuck s:
Prop :=
|
cm_ev_stuck_stuck:
cm_stuck s ->
cm_ev_stuck s
|
cm_ev_stuck_tau:
forall {
s'},
Cminor.cm_step ge s TEtau s' ->
cm_ev_stuck s' ->
cm_ev_stuck s
|
cm_ev_stuck_te_read:
forall {
l s'},
te_read l ->
Cminor.cm_step ge s l s' ->
(
forall l s',
te_read l ->
Cminor.cm_step ge s l s' ->
cm_ev_stuck s') ->
cm_ev_stuck s.
Definition weaksnoc (
t:
list thread_event) (
lab:
thread_event) :
list thread_event :=
match lab with
|
TEtau =>
t
|
_ =>
t++(
lab::
nil)
end.
Inductive cm_to :
Cminor.state ->
list thread_event ->
Cminor.state ->
Prop :=
|
cm_to_one :
forall st1 lab st2
(
CL:
clean st1)
(
CMSTEP:
Cminor.cm_step ge st1 lab st2),
cm_to st1 (
weaksnoc nil lab)
st2
|
cm_to_cons :
forall st1 t st2 lab st3
(
TO :
cm_to st1 t st2)
(
UC:
clean st2 =
false)
(
CMSTEP:
Cminor.cm_step ge st2 lab st3),
cm_to st1 (
weaksnoc t lab)
st3.
Lemma cm_to_one_tau :
forall st1 st2
(
CL:
clean st1)
(
CMSTEP:
Cminor.cm_step ge st1 TEtau st2),
cm_to st1 nil st2.
Proof.
Lemma cm_to_cons_tau:
forall st1 t st2 st3
(
TO :
cm_to st1 t st2)
(
UC:
clean st2 =
false)
(
CMSTEP:
Cminor.cm_step ge st2 TEtau st3),
cm_to st1 t st3.
Proof.
Inductive match_cm :
Cminor.state ->
small_step_state Cminor.state ->
Prop :=
|
Match_cm_zero:
forall st0
(
CL:
clean st0),
match_cm st0 (
SSState Cminor.state st0 nil)
|
Match_cm_left:
forall st0 t st1 te t'
st2
(
CL:
clean st0)
(
UC:
clean st1 =
false)
(
TO:
cm_to st0 t st1)
(
TS:
cm_via_unclean st1 (
te::
t')
st2),
match_cm st1 (
SSState Cminor.state st0 t)
|
Match_cm_right:
forall st0 t st1 st2
(
CL:
clean st0)
(
TO:
cm_to st0 t st1)
(
UC:
clean st1 =
false)
(
TS:
cm_via_unclean st1 nil st2),
match_cm st1 (
SSState Cminor.state st2 nil).
Tactic Notation "
match_cm_cases"
tactic(
first)
tactic(
c) :=
first; [
c "
Match_cm_zero" |
c "
Match_cm_left" |
c "
Match_cm_right" ].
Hint Constructors match_cm.
Hint Resolve cm_to_one_tau cm_to_cons_tau.
Lemma app_cons_nil:
forall A t (
lab:
A)
t1, (
t ++ (
lab ::
nil)) ++
t1 =
t ++ (
lab ::
t1).
Proof.
by induction t; intros; simpl; try rewrite IHt.
Qed.
Lemma weaksnoc_weakcons:
forall t t1 lab,
weaksnoc t lab ++
t1 =
t ++
weakcons lab t1.
Proof.
Lemma to_and_via_TO_via:
forall st0 t1 st1
(
TO :
cm_to st0 t1 st1)
t2 st2
(
VIA:
cm_via_unclean st1 t2 st2)
(
UC1 :
clean st1 =
false),
cm_via_unclean st0 (
t1++
t2)
st2.
Proof.
Lemma to_and_step_TO_via:
forall st0 t st1
(
TO :
cm_to st0 t st1)
te st2
(
CMSTEP :
cm_step ge st1 te st2)
(
NotEqual :
te <>
TEtau)
(
CL0 :
clean st0)
(
UC :
clean st1 =
false)
(
CL2 :
clean st2),
cm_via_unclean st0 (
t++
te::
nil)
st2.
Proof.
Lemma to_step_via_TO_via:
forall st0 t1 st1 te st2 t3 st3
(
TO :
cm_to st0 t1 st1)
(
CMSTEP :
cm_step ge st1 te st2)
(
VIA:
cm_via_unclean st2 t3 st3)
(
NotEqual :
te <>
TEtau)
(
CL0 :
clean st0)
(
UC1 :
clean st1 =
false)
(
UC2 :
clean st2 =
false),
cm_via_unclean st0 (
t1++
te::
t3)
st3.
Proof.
Lemma cm_no_expr_write:
forall st1 te st2
(
NZM: ~(
measure st1 = 0%
nat))
(
NOM: ~(
measure st1 = 1%
nat))
(
TRAN:
cm_step ge st1 te st2),
te_read te \/
te =
TEtau \/
match te with TEmem (
MErmw _ _ _ _) =>
True |
_ =>
False end.
Proof.
intros; inv TRAN; vauto. Qed.
Lemma minimum_measure_of_expr:
forall e,
measure_expr e <> 0%
nat.
Proof.
by induction e. Qed.
Lemma minimum_measure_of_expr_cont:
forall ek,
measure_expr_cont ek<> 0%
nat.
Proof.
by induction ek. Qed.
Lemma nonzero_plus:
forall (
n m :
nat) (
NZ:
n<>0%
nat), (
n +
m)%
nat <>0%
nat.
Proof.
intros; omega. Qed.
Lemma minimum_measure_of_unclean:
forall st
(
UC:
clean st =
false),
measure st <> 0%
nat.
Proof.
Lemma measure_zero_is_clean:
forall st
(
MZ:
measure st = 0%
nat),
clean st.
Proof.
Require Import Classical.
Lemma stuck_or_via:
forall st1
(
UC:
clean st1 =
false),
(
cm_ev_stuck st1) \/ (
exists st2,
exists t,
cm_via_unclean st1 t st2).
Proof.
intro st1;
generalize (
refl_equal (
measure st1)).
generalize (
measure st1)
at 2;
intro n;
revert st1.
induction n using lt_wf_ind;
intros.
destruct (
cm_progress_dec ge st1)
as [|(
l &
st1' &
STEP)]; [
by vauto|].
case_eq (
clean st1');
intro C.
-
eby right;
eexists;
eexists;
eapply cm_via_unclean_one.
assert (
measure st1 <> 0%
nat)
by (
eapply minimum_measure_of_unclean;
done).
assert (
H2: (
measure st1 = 0%
nat)%
nat + ((
measure st1 = 1%
nat) + (1%
nat <
measure st1)%
nat)).
by destruct (
measure st1)
as [|[]] ;
auto with arith.
destruct H2 as [
H2|[
H2|
H2]];
try done.
Case "
measure st1 = 1".
assert (
measure st1' <
measure st1)%
nat.
eby eapply decreasing_measure_from_unclean.
rewrite measure_zero_is_clean in C;
try done;
omega.
Case "
measure st1 > 1".
exploit cm_no_expr_write;
try eassumption;
try omega;
intros [
READ | [
TAU |
RMW]];
clarify.
SCase "
read".
destruct (
classic (
forall l'
st1'',
te_read l' ->
cm_step ge st1 l'
st1'' ->
cm_ev_stuck st1'')).
-
eby left;
eapply cm_ev_stuck_te_read.
assert (
X:
exists l',
exists st1'',
te_read l' /\
cm_step ge st1 l'
st1'' /\ ~
cm_ev_stuck st1'').
by apply NNPP;
intro;
case H0;
intros;
apply NNPP;
intro;
case H3;
vauto.
destruct X as (
l' &
st1'' &
READ' &
STEP' &
NSTUCK).
case_eq (
clean st1'');
intro C'; [
eby right;
eexists;
eexists;
eapply cm_via_unclean_one|].
exploit (
H (
measure st1''));
try done;
try eby eapply decreasing_measure_from_unclean.
by intros [
STUCK|(
st2 &
t &
VIA)];
try done;
right;
eexists;
eexists;
vauto.
SCase "
TEtau".
exploit (
H (
measure st1'));
try done;
try eby eapply decreasing_measure_from_unclean.
by intros [
STUCK|(
st2 &
t &
STEP')]; [
left |
right;
eexists;
eexists];
vauto.
SCase "
Rmw".
destruct l as [|[]| | | | | |];
clarify.
assert (
exists st2',
cm_step ge st1'
TEtau st2' /\
clean st2')
by (
inv STEP;
clarify;
eexists;
vauto).
des;
right;
eexists;
eexists;
vauto.
Qed.
Hint Resolve small_step_cm_intro.
Hint Constructors small_step_Recep.
Hint Resolve decreasing_measure_from_unclean.
Hint Resolve decreasing_measure_to_unclean.
Hint Resolve te_samekind_nottau.
Lemma cm_small_step_correct_helper:
forall st1 te st2 st0 t te0 t'
st5
(
S :
cm_step ge st1 te st2)
(
NotEqual :
te <>
TEtau)
(
CL :
clean st0)
(
UC :
clean st1 =
false)
(
TO :
cm_to st0 t st1)
(
TS :
cm_via_unclean st1 (
te0 ::
t')
st5)
(
C :
clean st2 =
false),
exists sst2,
small_step_cm (
SSState state st0 t)
te sst2.
Proof.
Lemma cm_small_step_correct:
forall st1 te st2 sst1
(
S:
cm_step ge st1 te st2)
(
M:
match_cm st1 sst1),
(
exists sst2,
( (
te=
TEtau /\ (
sst2=
sst1 /\ (
measure st2 <
measure st1)%
nat)) \/
small_step_cm sst1 te sst2) /\
(
match_cm st2 sst2 \/
cm_ev_stuck st2)).
Proof.
End RELSEM.