Applicative finite maps are the main data structure used in this
project. A finite map associates data to keys. The two main operations
are
set k d m, which returns a map identical to
m except that
d
is associated to
k, and
get k m which returns the data associated
to key
k in map
m. In this library, we distinguish two kinds of maps:
-
Trees: the get operation returns an option type, either None
if no data is associated to the key, or Some d otherwise.
-
Maps: the get operation always returns a data. If no data was explicitly
associated with the key, a default data provided at map initialization time
is returned.
In this library, we provide efficient implementations of trees and
maps whose keys range over the type
positive of binary positive
integers or any type that can be injected into
positive. The
implementation is based on radix-2 search trees (uncompressed
Patricia trees) and guarantees logarithmic-time operations. An
inefficient implementation of maps as functions is also provided.
Require Import Coqlib.
Set Implicit Arguments.
The abstract signatures of trees
Module Type TREE.
Variable elt:
Type.
Variable elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Variable t:
Type ->
Type.
Variable eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b}.
Variable empty:
forall (
A:
Type),
t A.
Variable get:
forall (
A:
Type),
elt ->
t A ->
option A.
Variable set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Variable remove:
forall (
A:
Type),
elt ->
t A ->
t A.
The ``good variables'' properties for trees, expressing
commutations between get, set and remove.
Hypothesis gempty:
forall (
A:
Type) (
i:
elt),
get i (
empty A) =
None.
Hypothesis gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Hypothesis gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Hypothesis gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then Some x else get i m.
Hypothesis gsident:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Hypothesis grs:
forall (
A:
Type) (
i:
elt) (
m:
t A),
get i (
remove i m) =
None.
Hypothesis gro:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Hypothesis grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Extensional equality between trees.
Variable beq:
forall (
A:
Type), (
A ->
A ->
bool) ->
t A ->
t A ->
bool.
Hypothesis beq_correct:
forall (
A:
Type) (
P:
A ->
A ->
Prop) (
cmp:
A ->
A ->
bool),
(
forall (
x y:
A),
cmp x y =
true ->
P x y) ->
forall (
t1 t2:
t A),
beq cmp t1 t2 =
true ->
forall (
x:
elt),
match get x t1,
get x t2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
P y1 y2
|
_,
_ =>
False
end.
Implicit Arguments beq_correct [
A].
Hypothesis ext:
forall A (
m1 m2:
t A),
(
forall (
x:
elt),
get x m1 =
get x m2) ->
m1 =
m2.
Hypothesis sss:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v v':
A),
set i v (
set i v'
m) =
set i v m.
Hypothesis sso:
forall (
A:
Type) (
i j:
elt) (
m:
t A) (
v v':
A),
i <>
j ->
set i v (
set j v'
m) =
set j v' (
set i v m).
Applying a function to all data of a tree.
Variable map:
forall (
A B:
Type), (
elt ->
A ->
B) ->
t A ->
t B.
Hypothesis gmap:
forall (
A B:
Type) (
f:
elt ->
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Applying a function pairwise to all data of two trees.
Variable combine:
forall (
A:
Type), (
option A ->
option A ->
option A) ->
t A ->
t A ->
t A.
Hypothesis gcombine:
forall (
A:
Type) (
f:
option A ->
option A ->
option A),
f None None =
None ->
forall (
m1 m2:
t A) (
i:
elt),
get i (
combine f m1 m2) =
f (
get i m1) (
get i m2).
Hypothesis combine_commut:
forall (
A:
Type) (
f g:
option A ->
option A ->
option A),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Enumerating the bindings of a tree.
Variable elements:
forall (
A:
Type),
t A ->
list (
elt *
A).
Hypothesis elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Hypothesis elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Hypothesis elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
NoDup (
List.map (@
fst elt A) (
elements m)).
Folding a function over all bindings of a tree.
Variable fold:
forall (
A B:
Type), (
B ->
elt ->
A ->
B) ->
t A ->
B ->
B.
Hypothesis fold_spec:
forall (
A B:
Type) (
f:
B ->
elt ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Lifting well_founded relation on elements to trees.
Variable order:
forall (
A :
Type), (
A ->
A ->
Prop) ->
t A ->
t A ->
Prop.
Hypothesis order_wf:
forall (
A :
Type) (
oel :
A ->
A ->
Prop),
well_founded oel ->
well_founded (
order oel).
Hypothesis order_set_lt:
forall (
A :
Type) (
lt :
A ->
A ->
Prop) (
tr :
t A) (
el :
elt)
(
val nval :
A),
get el tr =
Some val ->
lt nval val ->
(
order lt) (
set el nval tr)
tr.
End TREE.
The abstract signatures of maps
Module Type MAP.
Variable elt:
Type.
Variable elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Variable t:
Type ->
Type.
Variable init:
forall (
A:
Type),
A ->
t A.
Variable get:
forall (
A:
Type),
elt ->
t A ->
A.
Variable set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Hypothesis gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
get i (
init x) =
x.
Hypothesis gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Hypothesis gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Hypothesis gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Hypothesis gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Variable map:
forall (
A B:
Type), (
A ->
B) ->
t A ->
t B.
Hypothesis gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
End MAP.
An implementation of trees over type positive
Module PTree <:
TREE.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Inductive tree (
A :
Type) :
Type :=
|
Leaf :
tree A
|
Node :
tree A ->
option A ->
tree A ->
tree A
.
Implicit Arguments Leaf [
A].
Implicit Arguments Node [
A].
Fixpoint wf (
A :
Type) (
m :
tree A) {
struct m} :
bool :=
match m with
|
Leaf =>
true
|
Node t1 None t2 =>
match t1,
t2 with Leaf,
Leaf =>
false |
_,
_ =>
wf t1 &&
wf t2 end
|
Node t1 (
Some _)
t2 =>
wf t1 &&
wf t2
end.
Lemma wfNode (
A :
Type):
forall (
m1:
tree A)
o m2,
wf (
Node m1 o m2) ->
wf m1 /\
wf m2.
Proof.
by simpl;
intros m1 o m2 H;
destruct o;
destruct m1;
destruct m2;
clarify;
case (
andP H).
Qed.
Definition t A := {
x :
tree A |
wf x =
true}.
Lemma prove_eq:
forall A (
x :
tree A)
y Px Py,
x =
y ->
exist (
fun x =>
wf x)
x Px =
exist _ y Py.
Proof.
Theorem tree_eq :
forall (
A :
Type),
(
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b :
tree A), {
a =
b} + {
a <>
b}.
Proof.
intros A eqA.
decide equality.
generalize o o0; decide equality.
Qed.
Theorem eq :
forall (
A :
Type),
(
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b :
t A), {
a =
b} + {
a <>
b}.
Proof.
intros A eqA a b.
destruct a as [
a aPF];
destruct b as [
b bPF].
destruct (
tree_eq eqA a b);
clarify.
by left;
rewrite (
proof_irrelevance _ aPF bPF).
by right;
intro H;
inv H.
Qed.
Definition empty (
A :
Type) :
t A :=
exist _ Leaf (
refl_equal true).
Fixpoint tree_get (
A :
Type) (
i :
positive) (
m :
tree A) {
struct i} :
option A :=
match m with
|
Leaf =>
None
|
Node l o r =>
match i with
|
xH =>
o
|
xO ii =>
tree_get ii l
|
xI ii =>
tree_get ii r
end
end.
Definition get (
A :
Type) (
i :
positive) (
m :
t A) :=
tree_get i (
proj1_sig m).
Fixpoint tree_set (
A :
Type) (
i :
positive) (
v :
A) (
m :
tree A) {
struct i} :
tree A :=
match m with
|
Leaf =>
match i with
|
xH =>
Node Leaf (
Some v)
Leaf
|
xO ii =>
Node (
tree_set ii v Leaf)
None Leaf
|
xI ii =>
Node Leaf None (
tree_set ii v Leaf)
end
|
Node l o r =>
match i with
|
xH =>
Node l (
Some v)
r
|
xO ii =>
Node (
tree_set ii v l)
o r
|
xI ii =>
Node l o (
tree_set ii v r)
end
end.
Lemma tree_set_wf:
forall (
A:
Type)
i (
v :
A)
m,
wf m ->
wf (
tree_set i v m).
Proof.
by intros A i v;
induction i;
intros m mWF;
destruct m;
simpl in *;
try done;
try rewrite IHi;
try destruct i;
try done;
destruct m1;
destruct o;
destruct m2;
try done;
destruct (
andP mWF)
as [
X1 X2];
rewrite ?
X1, ?
X2.
Qed.
Definition set (
A :
Type) (
i :
positive) (
v :
A) (
m :
t A) :
t A :=
exist _ (
tree_set i v (
proj1_sig m)) (
tree_set_wf i v (
proj1_sig m) (
proj2_sig m)).
Fixpoint tree_remove (
A :
Type) (
i :
positive) (
m :
tree A) {
struct i} :
tree A :=
match i with
|
xH =>
match m with
|
Leaf =>
Leaf
|
Node Leaf o Leaf =>
Leaf
|
Node l o r =>
Node l None r
end
|
xO ii =>
match m with
|
Leaf =>
Leaf
|
Node l None Leaf =>
match tree_remove ii l with
|
Leaf =>
Leaf
|
mm =>
Node mm None Leaf
end
|
Node l o r =>
Node (
tree_remove ii l)
o r
end
|
xI ii =>
match m with
|
Leaf =>
Leaf
|
Node Leaf None r =>
match tree_remove ii r with
|
Leaf =>
Leaf
|
mm =>
Node Leaf None mm
end
|
Node l o r =>
Node l o (
tree_remove ii r)
end
end.
Lemma tree_remove_wf (
A :
Type) :
forall i (
m:
tree A),
wf m ->
wf (
tree_remove i m).
Proof.
induction i;
intros m mWF;
destruct m;
simpl in *;
try done;
try rewrite IHi;
try (
by destruct i);
try done;
destruct m1;
destruct o;
destruct m2;
try done;
destruct (
andP mWF)
as [
X1 X2];
clear mWF;
rewrite ?
X1, ?
X2;
simpl;
try done;
try rewrite IHi;
try (
by destruct i);
try generalize (
IHi _ X1);
try generalize (
IHi _ X2);
simpl in *;
try done;
by repeat destruct tree_remove;
simpl;
rewrite ?
andbT.
Qed.
Definition remove (
A :
Type) (
i :
positive) (
m :
t A) :
t A :=
exist _ (
tree_remove i (
proj1_sig m)) (
tree_remove_wf i (
proj1_sig m) (
proj2_sig m)).
Theorem gempty:
forall (
A:
Type) (
i:
positive),
get i (
empty A) =
None.
Proof.
induction i; simpl; auto.
Qed.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Proof.
destruct m as [m mPF]; unfold get, set; simpl.
clear mPF; revert m; induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf :
forall (
A :
Type) (
i :
positive),
tree_get i (
Leaf :
tree A) =
None.
Proof.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
destruct m as [
m mPF];
unfold get,
set;
simpl;
clear mPF;
revert j m.
induction i;
intros;
destruct j;
destruct m;
simpl;
try rewrite <- (
gleaf A i);
auto;
try apply IHi;
congruence.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then Some x else get i m.
Proof.
intros.
destruct (
peq i j); [
rewrite e;
apply gss |
apply gso;
auto ].
Qed.
Theorem gsident:
forall (
A:
Type) (
i:
positive) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Proof.
intros A i [
m mPF]
v G;
unfold get,
set in *;
simpl in *.
apply prove_eq.
clear mPF;
revert m v G.
by induction i;
intros;
destruct m;
simpl in *;
try congruence;
rewrite IHi.
Qed.
Lemma rleaf :
forall (
A :
Type) (
i :
positive),
tree_remove i (
Leaf :
tree A) =
Leaf.
Proof.
destruct i; simpl; auto. Qed.
Theorem grs:
forall (
A:
Type) (
i:
positive) (
m:
t A),
get i (
remove i m) =
None.
Proof.
intros A i [
m mPF];
unfold get,
set;
simpl;
clear mPF;
revert m.
induction i;
destruct m.
simpl;
auto.
destruct m1;
destruct o;
destruct m2 as [ |
ll oo rr];
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
tree_get i (
tree_remove i (
Node ll oo rr)) =
None).
destruct tree_remove;
try done;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1 as [ |
ll oo rr];
destruct o;
destruct m2;
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
tree_get i (
tree_remove i (
Node ll oo rr)) =
None).
destruct tree_remove;
try done;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1;
destruct m2;
simpl;
auto.
Qed.
Theorem gro:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Proof.
intros A i j [
m mPF];
unfold get,
remove;
simpl;
clear mPF;
revert j m.
induction i;
intros;
destruct j;
destruct m;
try rewrite (
rleaf A (
xI j));
try rewrite (
rleaf A (
xO j));
try rewrite (
rleaf A 1);
auto;
destruct m1;
destruct o;
destruct m2;
simpl;
try apply IHi;
try congruence;
try rewrite (
rleaf A j);
auto;
try rewrite (
gleaf A i);
auto;
try (
by destruct tree_remove;
simpl;
try rewrite (
gleaf A i)).
cut (
tree_get i (
tree_remove j (
Node m2_1 o m2_2)) =
tree_get i (
Node m2_1 o m2_2));
[
destruct tree_remove;
try rewrite (
gleaf A i);
auto
|
apply IHi;
congruence ].
cut (
tree_get i (
tree_remove j (
Node m1_1 o0 m1_2)) =
tree_get i (
Node m1_1 o0 m1_2));
[
by destruct tree_remove;
try rewrite (
gleaf A i)
|
apply IHi;
congruence ].
Qed.
Theorem grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Proof.
intros.
destruct (
elt_eq i j).
subst j.
apply grs.
apply gro;
auto.
Qed.
Section EXTENSIONAL_EQUALITY.
Variable A:
Type.
Variable eqA:
A ->
A ->
Prop.
Variable beqA:
A ->
A ->
bool.
Hypothesis beqA_correct:
forall x y,
beqA x y =
true ->
eqA x y.
Definition exteq (
m1 m2:
t A) :
Prop :=
forall (
x:
elt),
match get x m1,
get x m2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
eqA y1 y2
|
_,
_ =>
False
end.
Definition bempty (
m:
t A) :
bool :=
match proj1_sig m with
|
Leaf =>
true
|
Node _ _ _ =>
false
end.
Lemma bempty_correct:
forall m,
bempty m =
true ->
forall x,
get x m =
None.
Proof.
destruct m as [[] mPF]; unfold bempty, get; simpl; try done.
by intros ? [].
Qed.
Fixpoint tree_beq (
m1 m2:
tree A) {
struct m1} :
bool :=
match m1,
m2 with
|
Leaf,
Leaf =>
true
|
Leaf,
Node _ _ _ =>
false
|
Node _ _ _,
Leaf =>
false
|
Node l1 o1 r1,
Node l2 o2 r2 =>
match o1,
o2 with
|
None,
None =>
true
|
Some y1,
Some y2 =>
beqA y1 y2
|
_,
_ =>
false
end
&&
tree_beq l1 l2 &&
tree_beq r1 r2
end.
Definition beq (
m1 m2:
t A) :
bool :=
tree_beq (
proj1_sig m1) (
proj1_sig m2).
Lemma beq_correct:
forall m1 m2,
beq m1 m2 ->
exteq m1 m2.
Proof.
intros [
m1 m1PF] [
m2 m2PF];
unfold beq,
exteq,
get;
simpl.
revert m1PF m2 m2PF.
induction m1;
destruct m2;
simpl;
try done.
by intros ? ? [].
intros B.
cut (
wf m1_1 /\
wf m1_2 /\
wf m2_1 /\
wf m2_2);
[
intros [
X1 [
X2 [
Y1 Y2]]]
|
by destruct o;
destruct o0;
clarify;
destruct m1_1;
destruct m1_2;
destruct m2_1;
destruct m2_2;
clarify;
try case (
andP m1PF);
try case (
andP B)].
intros X4 x;
destruct (
andP X4)
as [
X5 Z2];
destruct (
andP X5)
as [
Z0 Z1];
clear X4 X5.
specialize (
IHm1_1 X1 m2_1 Y1 Z1).
specialize (
IHm1_2 X2 m2_2 Y2 Z2).
destruct m1_1;
destruct m1_2;
try done;
destruct m2_1;
destruct m2_2;
try done;
destruct x;
try done;
simpl;
solve [
by destruct o;
destruct o0;
try apply beqA_correct|
by apply IHm1_1|
by apply IHm1_2].
Qed.
End EXTENSIONAL_EQUALITY.
Theorem ext:
forall (
A:
Type) (
m1 m2:
t A),
(
forall (
x:
elt),
get x m1 =
get x m2) ->
m1 =
m2.
Proof.
intros A [
m1 W1] [
m2 W2]
EE;
unfold get in *;
simpl in *;
apply prove_eq.
revert m2 W2 EE.
induction m1;
induction m2;
try done;
intros;
simpl;
try pose proof (
wfNode _ _ _ W1)
as [
X11 X12];
try pose proof (
wfNode _ _ _ W2)
as [
X21 X22].
exploit (
IHm2_1 X21); [
intro y;
rewrite gleaf;
apply (
EE (
xO y))|
intro;
subst m2_1].
exploit (
IHm2_2 X22); [
intro y;
rewrite gleaf;
apply (
EE (
xI y))|
intro;
subst m2_2].
by destruct o;
try done;
generalize (
EE xH);
rewrite gleaf.
exploit (
IHm1_1 X11 _ W2); [
intro y;
rewrite gleaf;
apply (
EE (
xO y))|
intro;
subst m1_1].
exploit (
IHm1_2 X12 _ W2); [
intro y;
rewrite gleaf;
apply (
EE (
xI y))|
intro;
subst m1_2].
by destruct o;
try done;
generalize (
EE xH);
rewrite gleaf.
generalize (
EE xH);
simpl;
intro X;
subst o0.
rewrite (
IHm1_1 X11 _ X21 (
fun y =>
EE (
xO y))).
by rewrite (
IHm1_2 X12 _ X22 (
fun y =>
EE (
xI y))).
Qed.
Theorem sss:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v v':
A),
set i v (
set i v'
m) =
set i v m.
Proof.
by intros;
eapply ext;
intro x;
destruct (
peq x i); [
subst;
rewrite !
gss |
rewrite !
gso].
Qed.
Theorem sso:
forall (
A:
Type) (
i j:
elt) (
m:
t A) (
v v':
A),
i <>
j ->
set i v (
set j v'
m) =
set j v' (
set i v m).
Proof.
intros;
eapply ext;
intro x.
destruct (
peq x i);
destruct (
peq x j);
clarify;
repeat first [
done|
rewrite gss|
rewrite gso].
Qed.
Fixpoint append (
i j :
positive) {
struct i} :
positive :=
match i with
|
xH =>
j
|
xI ii =>
xI (
append ii j)
|
xO ii =>
xO (
append ii j)
end.
Lemma append_assoc_0 :
forall (
i j :
positive),
append i (
xO j) =
append (
append i (
xO xH))
j.
Proof.
induction i;
intros;
destruct j;
simpl;
try rewrite (
IHi (
xI j));
try rewrite (
IHi (
xO j));
try rewrite <- (
IHi xH);
auto.
Qed.
Lemma append_assoc_1 :
forall (
i j :
positive),
append i (
xI j) =
append (
append i (
xI xH))
j.
Proof.
induction i;
intros;
destruct j;
simpl;
try rewrite (
IHi (
xI j));
try rewrite (
IHi (
xO j));
try rewrite <- (
IHi xH);
auto.
Qed.
Lemma append_neutral_r :
forall (
i :
positive),
append i xH =
i.
Proof.
induction i; simpl; congruence.
Qed.
Lemma append_neutral_l :
forall (
i :
positive),
append xH i =
i.
Proof.
simpl; auto.
Qed.
Fixpoint xmap (
A B :
Type) (
f :
positive ->
A ->
B) (
m :
tree A) (
i :
positive)
{
struct m} :
tree B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node (
xmap f l (
append i (
xO xH)))
(
option_map (
f i)
o)
(
xmap f r (
append i (
xI xH)))
end.
Lemma xmap_wf (
A B:
Type) :
forall (
f :
positive ->
A ->
B) (
m :
tree A)
i,
wf m ->
wf (
xmap f m i).
Proof.
induction m;
intros i mWF;
simpl;
try done.
rewrite IHm1,
IHm2;
by simpl in mWF;
destruct o;
clarify;
destruct m1;
clarify;
destruct m2;
clarify;
destruct (
andP mWF).
Qed.
Definition map (
A B :
Type)
f (
m :
t A) :
t B :=
exist _ (
xmap f (
proj1_sig m)
xH) (
xmap_wf f (
proj1_sig m)
xH (
proj2_sig m)).
Lemma xgmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i j :
positive) (
m:
tree A),
tree_get i (
xmap f m j) =
option_map (
f (
append j i)) (
tree_get i m).
Proof.
Theorem gmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Proof.
Definition Node' (
A:
Type) (
l:
tree A) (
x:
option A) (
r:
tree A):
tree A :=
match l,
x,
r with
|
Leaf,
None,
Leaf =>
Leaf
|
_,
_,
_ =>
Node l x r
end.
Lemma Node'
_wf:
forall A (
l :
tree A)
x r,
wf l ->
wf r ->
wf (
Node'
l x r).
Proof.
intros A l x r Wl Wr; unfold Node'.
by destruct x; destruct l; destruct r; clarify; simpl in *; rewrite ?Wl, ?Wr.
Qed.
Lemma gnode':
forall (
A:
Type) (
l r:
tree A) (
x:
option A) (
i:
positive),
tree_get i (
Node'
l x r) =
tree_get i (
Node l x r).
Proof.
intros.
unfold Node'.
destruct l;
destruct x;
destruct r;
auto.
destruct i;
simpl;
auto;
rewrite gleaf;
auto.
Qed.
Section COMBINE.
Variable A:
Type.
Variable f:
option A ->
option A ->
option A.
Hypothesis f_none_none:
f None None =
None.
Fixpoint xcombine_l (
m :
tree A) {
struct m} :
tree A :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_l l) (
f o None) (
xcombine_l r)
end.
Lemma xgcombine_l :
forall (
m:
tree A) (
i :
positive),
tree_get i (
xcombine_l m) =
f (
tree_get i m)
None.
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Lemma xcombine_l_wf:
forall (
m :
tree A),
wf m ->
wf (
xcombine_l m).
Proof.
induction m;
clarify.
simpl;
intro W.
apply Node'
_wf; [
apply IHm1|
apply IHm2];
by destruct o;
destruct m1;
destruct m2;
clarify;
destruct (
andP W).
Qed.
Fixpoint xcombine_r (
m :
tree A) {
struct m} :
tree A :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_r l) (
f None o) (
xcombine_r r)
end.
Lemma xgcombine_r :
forall (
m:
tree A) (
i :
positive),
tree_get i (
xcombine_r m) =
f None (
tree_get i m).
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Lemma xcombine_r_wf:
forall (
m :
tree A),
wf m ->
wf (
xcombine_r m).
Proof.
induction m;
clarify.
simpl;
intro W.
apply Node'
_wf; [
apply IHm1|
apply IHm2];
by destruct o;
destruct m1;
destruct m2;
clarify;
destruct (
andP W).
Qed.
Fixpoint xcombine (
m1 m2 :
tree A) {
struct m1} :
tree A :=
match m1 with
|
Leaf =>
xcombine_r m2
|
Node l1 o1 r1 =>
match m2 with
|
Leaf =>
xcombine_l m1
|
Node l2 o2 r2 =>
Node' (
xcombine l1 l2) (
f o1 o2) (
xcombine r1 r2)
end
end.
Lemma xcombine_wf:
forall (
m1 m2 :
tree A),
wf m1 ->
wf m2 ->
wf (
xcombine m1 m2).
Proof.
induction m1;
destruct m2;
simpl;
intros W1 W2;
clarify;
repeat first [
apply Node'
_wf |
apply xcombine_l_wf |
apply xcombine_r_wf |
apply IHm1_1 |
apply IHm1_2];
by simpl in W1,
W2;
destruct o;
try destruct o0;
clarify;
try destruct m1_1;
try destruct m1_2;
try destruct m2_1;
try destruct m2_2;
clarify;
try destruct (
andP W1);
try destruct (
andP W2).
Qed.
Definition combine (
m1 m2 :
t A) :
t A :=
exist _ (
xcombine (
proj1_sig m1) (
proj1_sig m2))
(
xcombine_wf (
proj1_sig m1) (
proj1_sig m2) (
proj2_sig m1) (
proj2_sig m2)).
Theorem gcombine:
forall (
m1 m2:
t A) (
i:
positive),
get i (
combine m1 m2) =
f (
get i m1) (
get i m2).
Proof.
intros [
m1 W1] [
m2 W2];
unfold get,
combine;
simpl;
clear W1 W2;
revert m2.
induction m1;
intros;
simpl.
rewrite gleaf.
apply xgcombine_r.
destruct m2;
simpl.
rewrite gleaf.
rewrite <-
xgcombine_l.
auto.
repeat rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
End COMBINE.
Lemma xcombine_lr :
forall (
A :
Type) (
f g :
option A ->
option A ->
option A) (
m :
tree A),
(
forall (
i j :
option A),
f i j =
g j i) ->
xcombine_l f m =
xcombine_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem combine_commut:
forall (
A:
Type) (
f g:
option A ->
option A ->
option A),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Proof.
intros A f g EQ1.
assert (
EQ2:
forall (
i j:
option A),
g i j =
f j i).
intros;
auto.
intros [
m1 W1] [
m2 W2];
unfold combine;
simpl;
apply prove_eq;
clear W1 W2;
revert m2.
induction m1;
intros;
destruct m2;
simpl;
try rewrite EQ1;
repeat rewrite (
xcombine_lr f g);
repeat rewrite (
xcombine_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
Fixpoint xelements (
A :
Type) (
m :
tree A) (
i :
positive) {
struct m}
:
list (
positive *
A) :=
match m with
|
Leaf =>
nil
|
Node l None r =>
(
xelements l (
append i (
xO xH))) ++ (
xelements r (
append i (
xI xH)))
|
Node l (
Some x)
r =>
(
xelements l (
append i (
xO xH)))
++ ((
i,
x) ::
xelements r (
append i (
xI xH)))
end.
Definition elements A (
m :
t A) :=
xelements (
proj1_sig m)
xH.
Lemma xelements_correct:
forall (
A:
Type) (
m:
tree A) (
i j :
positive) (
v:
A),
tree_get i m =
Some v ->
In (
append j i,
v) (
xelements m j).
Proof.
Theorem elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Proof.
Fixpoint xget (
A :
Type) (
i j :
positive) (
m :
tree A) {
struct j} :
option A :=
match i,
j with
|
_,
xH =>
tree_get i m
|
xO ii,
xO jj =>
xget ii jj m
|
xI ii,
xI jj =>
xget ii jj m
|
_,
_ =>
None
end.
Lemma xget_left :
forall (
A :
Type) (
j i :
positive) (
m1 m2 :
tree A) (
o :
option A) (
v :
A),
xget i (
append j (
xO xH))
m1 =
Some v ->
xget i j (
Node m1 o m2) =
Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; congruence.
Qed.
Lemma xelements_ii :
forall (
A:
Type) (
m:
tree A) (
i j :
positive) (
v:
A),
In (
xI i,
v) (
xelements m (
xI j)) ->
In (
i,
v) (
xelements m j).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
simpl in H;
destruct (
in_app_or _ _ _ H);
apply in_or_app.
left;
apply IHm1;
auto.
right;
destruct (
in_inv H0).
injection H1;
intros EQ1 EQ2;
rewrite EQ1;
rewrite EQ2;
apply in_eq.
apply in_cons;
apply IHm2;
auto.
left;
apply IHm1;
auto.
right;
apply IHm2;
auto.
Qed.
Lemma xelements_io :
forall (
A:
Type) (
m:
tree A) (
i j :
positive) (
v:
A),
~
In (
xI i,
v) (
xelements m (
xO j)).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
apply (
IHm1 _ _ _ H0).
destruct (
in_inv H0).
congruence.
apply (
IHm2 _ _ _ H1).
apply (
IHm1 _ _ _ H0).
apply (
IHm2 _ _ _ H0).
Qed.
Lemma xelements_oo :
forall (
A:
Type) (
m:
tree A) (
i j :
positive) (
v:
A),
In (
xO i,
v) (
xelements m (
xO j)) ->
In (
i,
v) (
xelements m j).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
simpl in H;
destruct (
in_app_or _ _ _ H);
apply in_or_app.
left;
apply IHm1;
auto.
right;
destruct (
in_inv H0).
injection H1;
intros EQ1 EQ2;
rewrite EQ1;
rewrite EQ2;
apply in_eq.
apply in_cons;
apply IHm2;
auto.
left;
apply IHm1;
auto.
right;
apply IHm2;
auto.
Qed.
Lemma xelements_oi :
forall (
A:
Type) (
m:
tree A) (
i j :
positive) (
v:
A),
~
In (
xO i,
v) (
xelements m (
xI j)).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
apply (
IHm1 _ _ _ H0).
destruct (
in_inv H0).
congruence.
apply (
IHm2 _ _ _ H1).
apply (
IHm1 _ _ _ H0).
apply (
IHm2 _ _ _ H0).
Qed.
Lemma xelements_ih :
forall (
A:
Type) (
m1 m2:
tree A) (
o:
option A) (
i :
positive) (
v:
A),
In (
xI i,
v) (
xelements (
Node m1 o m2)
xH) ->
In (
i,
v) (
xelements m2 xH).
Proof.
Lemma xelements_oh :
forall (
A:
Type) (
m1 m2:
tree A) (
o:
option A) (
i :
positive) (
v:
A),
In (
xO i,
v) (
xelements (
Node m1 o m2)
xH) ->
In (
i,
v) (
xelements m1 xH).
Proof.
Lemma xelements_hi :
forall (
A:
Type) (
m:
tree A) (
i :
positive) (
v:
A),
~
In (
xH,
v) (
xelements m (
xI i)).
Proof.
induction m;
intros.
simpl;
auto.
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
generalize H0;
apply IHm1;
auto.
destruct (
in_inv H0).
congruence.
generalize H1;
apply IHm2;
auto.
generalize H0;
apply IHm1;
auto.
generalize H0;
apply IHm2;
auto.
Qed.
Lemma xelements_ho :
forall (
A:
Type) (
m:
tree A) (
i :
positive) (
v:
A),
~
In (
xH,
v) (
xelements m (
xO i)).
Proof.
induction m;
intros.
simpl;
auto.
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
generalize H0;
apply IHm1;
auto.
destruct (
in_inv H0).
congruence.
generalize H1;
apply IHm2;
auto.
generalize H0;
apply IHm1;
auto.
generalize H0;
apply IHm2;
auto.
Qed.
Lemma get_xget_h :
forall (
A:
Type) (
m:
tree A) (
i:
positive),
tree_get i m =
xget i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
forall (
A:
Type) (
i j :
positive) (
m:
tree A) (
v:
A),
In (
i,
v) (
xelements m j) ->
xget i j m =
Some v.
Proof.
Theorem elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Proof.
Lemma in_xelements:
forall (
A:
Type) (
m:
tree A) (
i k:
positive) (
v:
A),
In (
k,
v) (
xelements m i) ->
exists j,
k =
append i j.
Proof.
induction m;
simpl;
intros.
tauto.
assert (
k =
i \/
In (
k,
v) (
xelements m1 (
append i 2))
\/
In (
k,
v) (
xelements m2 (
append i 3))).
destruct o.
elim (
in_app_or _ _ _ H);
simpl;
intuition.
replace k with i.
tauto.
congruence.
elim (
in_app_or _ _ _ H);
simpl;
intuition.
elim H0;
intro.
exists xH.
rewrite append_neutral_r.
auto.
elim H1;
intro.
elim (
IHm1 _ _ _ H2).
intros k1 EQ.
rewrite EQ.
rewrite <-
append_assoc_0.
exists (
xO k1);
auto.
elim (
IHm2 _ _ _ H2).
intros k1 EQ.
rewrite EQ.
rewrite <-
append_assoc_1.
exists (
xI k1);
auto.
Qed.
Definition xkeys (
A:
Type) (
m:
tree A) (
i:
positive) :=
List.map (@
fst positive A) (
xelements m i).
Lemma in_xkeys:
forall (
A:
Type) (
m:
tree A) (
i k:
positive),
In k (
xkeys m i) ->
exists j,
k =
append i j.
Proof.
unfold xkeys;
intros.
elim (
list_in_map_inv _ _ _ H).
intros [
k1 v1] [
EQ IN].
simpl in EQ;
subst k1.
apply in_xelements with A m v1.
auto.
Qed.
Remark list_append_cons_norepet:
forall (
A:
Type) (
l1 l2:
list A) (
x:
A),
NoDup l1 ->
NoDup l2 ->
list_disjoint l1 l2 ->
~
In x l1 -> ~
In x l2 ->
NoDup (
l1 ++
x ::
l2).
Proof.
Lemma append_injective:
forall i j1 j2,
append i j1 =
append i j2 ->
j1 =
j2.
Proof.
induction i; simpl; intros.
apply IHi. congruence.
apply IHi. congruence.
auto.
Qed.
Lemma xelements_keys_norepet:
forall (
A:
Type) (
m:
tree A) (
i:
positive),
NoDup (
xkeys m i).
Proof.
Theorem elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
NoDup (
List.map (@
fst elt A) (
elements m)).
Proof.
Fixpoint xfold (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
(
i:
positive) (
m:
tree A) (
v:
B) {
struct m} :
B :=
match m with
|
Leaf =>
v
|
Node l None r =>
let v1 :=
xfold f (
append i (
xO xH))
l v in
xfold f (
append i (
xI xH))
r v1
|
Node l (
Some x)
r =>
let v1 :=
xfold f (
append i (
xO xH))
l v in
let v2 :=
f v1 i x in
xfold f (
append i (
xI xH))
r v2
end.
Definition fold (
A B :
Type) (
f:
B ->
positive ->
A ->
B) (
m:
t A) (
v:
B) :=
xfold f xH (
proj1_sig m)
v.
Lemma xfold_xelements:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
m i v,
xfold f i m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p))
(
xelements m i)
v.
Proof.
induction m;
intros.
simpl.
auto.
simpl.
destruct o.
rewrite fold_left_app.
simpl.
rewrite IHm1.
apply IHm2.
rewrite fold_left_app.
simpl.
rewrite IHm1.
apply IHm2.
Qed.
Theorem fold_spec:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Proof.
Section ORDER_WF.
Inductive tree_struct :=
|
TSLeaf :
tree_struct
|
TSNode :
tree_struct ->
tree_struct ->
tree_struct.
Fixpoint struct_of_tree (
A :
Type) (
t :
tree A) :
tree_struct :=
match t with
|
Leaf =>
TSLeaf
|
Node l _ r =>
TSNode (
struct_of_tree l) (
struct_of_tree r)
end.
Variable (
A :
Type).
Variable (
lt :
A ->
A ->
Prop).
Hypothesis (
lt_wf :
well_founded lt).
Inductive tlt :
tree A ->
tree A ->
Prop :=
|
tlt_left:
forall l1 l2 o1 o2 r1 r2,
tlt l1 l2 ->
struct_of_tree r1 =
struct_of_tree r2 ->
tlt (
Node l1 o1 r1) (
Node l2 o2 r2)
|
tlt_el_none:
forall l o r1 r2,
struct_of_tree r1 =
struct_of_tree r2 ->
tlt (
Node l None r1) (
Node l (
Some o)
r2)
|
tlt_el:
forall l o1 o2 r1 r2,
lt o1 o2 ->
struct_of_tree r1 =
struct_of_tree r2 ->
tlt (
Node l (
Some o1)
r1) (
Node l (
Some o2)
r2)
|
tlt_right:
forall l o r1 r2,
tlt r1 r2 ->
tlt (
Node l o r1) (
Node l o r2).
Definition order (
m1 m2 :
t A) :=
tlt (
proj1_sig m1) (
proj1_sig m2).
Lemma order_impl_same_struct:
forall a b,
tlt a b ->
struct_of_tree a =
struct_of_tree b.
Proof.
intros a b LT.
induction LT; simpl; try f_equal; try assumption.
Qed.
Definition restricted_lt (
s :
tree_struct) (
x y :
tree A) :
Prop :=
struct_of_tree x =
s /\
struct_of_tree y =
s /\
tlt x y.
Lemma leaf_no_order:
forall t, ~
tlt t Leaf.
Proof.
intros tr OR. inversion OR.
Qed.
Lemma struct_leaf:
forall t,
struct_of_tree t =
TSLeaf ->
t = @
Leaf A.
Proof.
intros tr STR. induction tr.
reflexivity.
simpl in STR; discriminate.
Qed.
Inductive lt_opt :
option A ->
option A ->
Prop :=
|
lt_opt_none :
forall o,
lt_opt None (
Some o)
|
lt_opt_some :
forall o1 o2,
lt o1 o2 ->
lt_opt (
Some o1) (
Some o2).
Lemma wf_lt_opt_base:
Acc lt_opt None.
Proof.
apply Acc_intro.
intros y LT.
inversion LT.
Qed.
Lemma wf_lt_opt:
well_founded lt_opt.
Proof.
Lemma restricted_wf_base:
well_founded (
restricted_lt TSLeaf).
Proof.
Lemma acc_restricted_node_leaf:
forall s,
Acc (
restricted_lt s)
Leaf.
Proof.
intro s.
apply Acc_intro.
intros x RLT.
destruct RLT as [
_ [
_ LT]].
inversion LT.
Qed.
Lemma restricted_wf :
forall s,
well_founded (
restricted_lt s).
Proof.
induction s as [|
ls l_wf rs r_wf].
apply restricted_wf_base.
intro x.
destruct x as [|
xl xo xr].
apply acc_restricted_node_leaf.
set (
rt_lr :=
restricted_lt (
TSNode ls rs)).
set (
rt_l :=
restricted_lt ls).
set (
rt_r :=
restricted_lt rs).
revert xo xr.
set (
IH l :=
forall o r,
Acc rt_lr (
Node l o r)).
apply (
well_founded_ind l_wf IH).
unfold IH.
clear IH xl.
intros xl IHl.
set (
IH o :=
forall r,
Acc rt_lr (
Node xl o r)).
apply (
well_founded_ind wf_lt_opt IH).
unfold IH.
clear IH.
intros xo IHo.
set (
IH r :=
Acc rt_lr (
Node xl xo r)).
apply (
well_founded_ind r_wf IH).
unfold IH.
clear IH.
intros xr IHr.
apply Acc_intro.
intros y RLT.
destruct y as [|
yl yo yr].
apply acc_restricted_node_leaf.
destruct RLT as [
Lstr [
Rstr LT]].
injection Lstr as Syr Syl.
injection Rstr as Sxr Sxl.
inversion LT as [
l1 l2 o1 o2 r1 r2 TLTl Seq [
El1 Eo1 Er1] [
El2 Eo2 Er2]|
l o r1 r2 Seq [
El1 Eo1 Er1] [
El2 Eo2 Er2] |
l o1 o2 r1 r2 LTo Seq [
El1 Eo1 Er1] [
El2 Eo2 Er2] |
l o r1 r2 TLTr [
El1 Eo1 Er1] [
El2 Eo2 Er2]].
apply IHl.
repeat split;
try assumption.
apply IHo.
rewrite <-
Eo2.
apply lt_opt_none.
apply IHo.
rewrite <-
Eo2.
apply lt_opt_some.
assumption.
apply IHr.
repeat split;
try assumption.
Qed.
Lemma tlt_wf:
well_founded tlt.
Proof.
Lemma order_wf:
well_founded order.
Proof.
Lemma order_set_lt:
forall (
tr :
t A) (
el :
elt) (
val nval :
A),
get el tr =
Some val ->
lt nval val ->
order (
set el nval tr)
tr.
Proof.
intros [
tr W].
unfold get,
order;
simpl;
clear W.
induction tr as [|
l IHl o r IHr].
intros e v v'
G.
destruct e;
simpl in G;
discriminate.
intros e v v'
G LT.
destruct e as [
e|
e|];
simpl in G;
simpl.
apply tlt_right.
exact (
IHr _ _ _ G LT).
apply tlt_left.
exact (
IHl _ _ _ G LT).
reflexivity.
rewrite G.
apply tlt_el.
assumption.
reflexivity.
Qed.
End ORDER_WF.
End PTree.
Module ZTree <:
TREE.
Definition elt :=
Z.
Definition elt_eq :=
Z_eq_dec.
Definition t :=
PTree.t.
Definition index (
z:
Z):
positive :=
match z with
|
Z0 =>
xH
|
Zpos p =>
xO p
|
Zneg p =>
xI p
end.
Definition index_inverse (
p:
positive) :
Z :=
match p with
|
xH =>
Z0
|
xO p =>
Zpos p
|
xI p =>
Zneg p
end.
Lemma index_inv1 :
forall x,
index (
index_inverse x) =
x.
Proof.
by destruct x. Qed.
Lemma index_inv2 :
forall x,
index_inverse (
index x) =
x.
Proof.
by destruct x. Qed.
Lemma index_inj:
forall x y,
index x =
index y ->
x =
y.
Proof.
by destruct x; destruct y; intros; clarify. Qed.
Lemma index_inv_inj:
forall x y,
index_inverse x =
index_inverse y ->
x =
y.
Proof.
by destruct x; destruct y; intros; clarify. Qed.
Definition eq :=
PTree.eq.
Definition empty :=
PTree.empty.
Definition get A z (
m:
t A) :=
PTree.get (
index z)
m.
Definition set A z v (
m:
t A) :=
PTree.set (
index z)
v m.
Definition remove A z (
m :
t A) :=
PTree.remove (
index z)
m.
Theorem gempty:
forall (
A:
Type) (
i:
elt),
get i (
empty A) =
None.
Proof.
Theorem gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Proof.
Theorem gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
Theorem gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then Some x else get i m.
Proof.
Theorem gsident:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Proof.
Theorem grs:
forall (
A:
Type) (
i:
elt) (
m:
t A),
get i (
remove i m) =
None.
Proof.
Theorem gro:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Proof.
Theorem grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Proof.
Extensional equality between trees.
Definition beq :=
PTree.beq.
Theorem beq_correct:
forall (
A:
Type) (
P:
A ->
A ->
Prop) (
cmp:
A ->
A ->
bool),
(
forall (
x y:
A),
cmp x y =
true ->
P x y) ->
forall (
t1 t2:
t A),
beq cmp t1 t2 =
true ->
forall (
x:
elt),
match get x t1,
get x t2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
P y1 y2
|
_,
_ =>
False
end.
Proof.
intros A P cmp E1 t1 t2 E2 x;
unfold get.
by apply (@
PTree.beq_correct _ _ cmp).
Qed.
Theorem ext:
forall A (
m1 m2:
t A),
(
forall (
x:
elt),
get x m1 =
get x m2) ->
m1 =
m2.
Proof.
Theorem sss:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v v':
A),
set i v (
set i v'
m) =
set i v m.
Proof.
Theorem sso:
forall (
A:
Type) (
i j:
elt) (
m:
t A) (
v v':
A),
i <>
j ->
set i v (
set j v'
m) =
set j v' (
set i v m).
Proof.
intros;
eapply PTree.sso.
intro;
destruct i;
destruct j;
clarify.
Qed.
Applying a function to all data of a tree.
Definition map :=
fun (
A B:
Type) (
f:
elt ->
A ->
B) (
t:
t A) =>
PTree.map (
fun x =>
f (
index_inverse x))
t.
Theorem gmap:
forall (
A B:
Type) (
f:
elt ->
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Proof.
Applying a function pairwise to all data of two trees.
Definition combine :=
PTree.combine.
Theorem gcombine:
forall (
A:
Type) (
f:
option A ->
option A ->
option A),
f None None =
None ->
forall (
m1 m2:
t A) (
i:
elt),
get i (
combine f m1 m2) =
f (
get i m1) (
get i m2).
Proof.
Theorem combine_commut:
forall (
A:
Type) (
f g:
option A ->
option A ->
option A),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Proof.
Enumerating the bindings of a tree.
Definition elements (
A :
Type) (
m :
t A) :=
List.map (
fun p => (
index_inverse (
fst p),
snd p)) (
PTree.elements m).
Theorem elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Proof.
Theorem elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Proof.
Lemma NoDup_map1 :
forall A B (
f :
A ->
B)
l,
NoDup (
List.map f l) ->
NoDup l.
Proof.
induction l;
intros H; [
by apply NoDup_nil|].
inv H.
constructor;
auto.
by intro;
elim H2;
apply List.in_map.
Qed.
Theorem elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
NoDup (
List.map (@
fst elt A) (
elements m)).
Proof.
Folding a function over all bindings of a tree.
Definition fold (
A B:
Type) (
f:
B ->
elt ->
A ->
B) (
m:
t A) (
e:
B) :=
PTree.fold (
fun e x =>
f e (
index_inverse x))
m e.
Theorem fold_spec:
forall (
A B:
Type) (
f:
B ->
elt ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Proof.
Lifting well_founded relation on elements to trees.
Definition order :=
PTree.order.
Definition order_wf :=
PTree.order_wf.
Theorem order_set_lt:
forall (
A :
Type) (
lt :
A ->
A ->
Prop) (
tr :
t A) (
el :
elt)
(
val nval :
A),
get el tr =
Some val ->
lt nval val ->
(
order lt) (
set el nval tr)
tr.
Proof.
End ZTree.
An implementation of maps over type positive
Module PMap <:
MAP.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Definition t (
A :
Type) :
Type := (
A *
PTree.t A)%
type.
Definition eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b}.
Proof.
intros.
generalize (
PTree.eq X).
intros.
decide equality.
Qed.
Definition init (
A :
Type) (
x :
A) :=
(
x,
PTree.empty A).
Definition get (
A :
Type) (
i :
positive) (
m :
t A) :=
match PTree.get i (
snd m)
with
|
Some x =>
x
|
None =>
fst m
end.
Definition set (
A :
Type) (
i :
positive) (
x :
A) (
m :
t A) :=
(
fst m,
PTree.set i x (
snd m)).
Theorem gi:
forall (
A:
Type) (
i:
positive) (
x:
A),
get i (
init x) =
x.
Proof.
intros.
unfold init.
unfold get.
simpl.
rewrite PTree.gempty.
auto.
Qed.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gss.
auto.
Qed.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gso;
auto.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then x else get i m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
apply gss.
auto.
apply gso.
auto.
Qed.
Theorem gsident:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
rewrite gss.
auto.
rewrite gso;
auto.
Qed.
Definition map (
A B :
Type) (
f :
A ->
B) (
m :
t A) :
t B :=
(
f (
fst m),
PTree.map (
fun _ =>
f) (
snd m)).
Theorem gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros.
unfold map.
unfold get.
simpl.
rewrite PTree.gmap.
unfold option_map.
destruct (
PTree.get i (
snd m));
auto.
Qed.
End PMap.
An implementation of maps over any type that injects into type positive
Module Type INDEXED_TYPE.
Variable t:
Type.
Variable index:
t ->
positive.
Hypothesis index_inj:
forall (
x y:
t),
index x =
index y ->
x =
y.
Variable eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End INDEXED_TYPE.
Module IMap(
X:
INDEXED_TYPE).
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t :
Type ->
Type :=
PMap.t.
Definition eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b} :=
PMap.eq.
Definition init (
A:
Type) (
x:
A) :=
PMap.init x.
Definition get (
A:
Type) (
i:
X.t) (
m:
t A) :=
PMap.get (
X.index i)
m.
Definition set (
A:
Type) (
i:
X.t) (
v:
A) (
m:
t A) :=
PMap.set (
X.index i)
v m.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :
t B :=
PMap.map f m.
Lemma gi:
forall (
A:
Type) (
x:
A) (
i:
X.t),
get i (
init x) =
x.
Proof.
intros.
unfold get,
init.
apply PMap.gi.
Qed.
Lemma gss:
forall (
A:
Type) (
i:
X.t) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
intros.
unfold get,
set.
apply PMap.gss.
Qed.
Lemma gso:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
Lemma gsspec:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
get i (
set j x m) =
if X.eq i j then x else get i m.
Proof.
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
X.t) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros.
unfold map,
get.
apply PMap.gmap.
Qed.
End IMap.
Module ZIndexed.
Definition t :=
Z.
Definition index (
z:
Z):
positive :=
match z with
|
Z0 =>
xH
|
Zpos p =>
xO p
|
Zneg p =>
xI p
end.
Lemma index_inj:
forall (
x y:
Z),
index x =
index y ->
x =
y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
congruence.
Qed.
Definition eq :=
zeq.
End ZIndexed.
Module ZMap :=
IMap(
ZIndexed).
Module NIndexed.
Definition t :=
N.
Definition index (
n:
N):
positive :=
match n with
|
N0 =>
xH
|
Npos p =>
xO p
end.
Lemma index_inj:
forall (
x y:
N),
index x =
index y ->
x =
y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
Qed.
Lemma eq:
forall (
x y:
N), {
x =
y} + {
x <>
y}.
Proof.
decide equality.
apply peq.
Qed.
End NIndexed.
Module NMap :=
IMap(
NIndexed).
An implementation of maps over any type with decidable equality
Module Type EQUALITY_TYPE.
Variable t:
Type.
Variable eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End EQUALITY_TYPE.
Module EMap(
X:
EQUALITY_TYPE) <:
MAP.
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t (
A:
Type) :=
X.t ->
A.
Definition init (
A:
Type) (
v:
A) :=
fun (
_:
X.t) =>
v.
Definition get (
A:
Type) (
x:
X.t) (
m:
t A) :=
m x.
Definition set (
A:
Type) (
x:
X.t) (
v:
A) (
m:
t A) :=
fun (
y:
X.t) =>
if X.eq y x then v else m y.
Lemma gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
init x i =
x.
Proof.
intros. reflexivity.
Qed.
Lemma gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A), (
set i x m)
i =
x.
Proof.
intros.
unfold set.
case (
X.eq i i);
intro.
reflexivity.
tauto.
Qed.
Lemma gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j -> (
set j x m)
i =
m i.
Proof.
intros.
unfold set.
case (
X.eq i j);
intro.
congruence.
reflexivity.
Qed.
Lemma gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Proof.
intros. unfold get, set, elt_eq. reflexivity.
Qed.
Lemma gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
unfold get,
set.
case (
X.eq j i);
intro.
congruence.
reflexivity.
Qed.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :=
fun (
x:
X.t) =>
f(
m x).
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros. unfold get, map. reflexivity.
Qed.
End EMap.
Additional properties over trees
Module Tree_Properties(
T:
TREE).
An induction principle over fold.
Section TREE_FOLD_IND.
Variables V A:
Type.
Variable f:
A ->
T.elt ->
V ->
A.
Variable P:
T.t V ->
A ->
Prop.
Variable init:
A.
Variable m_final:
T.t V.
Hypothesis P_compat:
forall m m'
a,
(
forall x,
T.get x m =
T.get x m') ->
P m a ->
P m'
a.
Hypothesis H_base:
P (
T.empty _)
init.
Hypothesis H_rec:
forall m a k v,
T.get k m =
None ->
T.get k m_final =
Some v ->
P m a ->
P (
T.set k v m) (
f a k v).
Definition f' (
a:
A) (
p :
T.elt *
V) :=
f a (
fst p) (
snd p).
Definition P' (
l:
list (
T.elt *
V)) (
a:
A) :
Prop :=
forall m,
list_equiv l (
T.elements m) ->
P m a.
Remark H_base':
P'
nil init.
Proof.
Remark H_rec':
forall k v l a,
~
In k (
List.map (@
fst T.elt V)
l) ->
In (
k,
v) (
T.elements m_final) ->
P'
l a ->
P' (
l ++ (
k,
v) ::
nil) (
f a k v).
Proof.
Lemma fold_rec_aux:
forall l1 l2 a,
list_equiv (
l2 ++
l1) (
T.elements m_final) ->
list_disjoint (
List.map (@
fst T.elt V)
l1) (
List.map (@
fst T.elt V)
l2) ->
NoDup (
List.map (@
fst T.elt V)
l1) ->
P'
l2 a ->
P' (
l2 ++
l1) (
List.fold_left f'
l1 a).
Proof.
induction l1;
intros;
simpl.
rewrite <-
List.app_nil_end.
auto.
destruct a as [
k v];
simpl in *.
inv H1.
change ((
k,
v) ::
l1)
with (((
k,
v) ::
nil) ++
l1).
rewrite <-
List.app_ass.
apply IHl1.
rewrite app_ass.
auto.
red;
intros.
rewrite map_app in H3.
destruct (
in_app_or _ _ _ H3).
apply H0;
auto with coqlib.
simpl in H4.
intuition congruence.
auto.
unfold f'.
simpl.
apply H_rec';
auto.
eapply list_disjoint_notin;
eauto with coqlib.
rewrite <- (
H (
k,
v)).
apply in_or_app.
simpl.
auto.
Qed.
Theorem fold_rec:
P m_final (
T.fold f m_final init).
Proof.
End TREE_FOLD_IND.
End Tree_Properties.
Module PTree_Properties :=
Tree_Properties(
PTree).
Useful notations
Notation "
a !
b" := (
PTree.get b a) (
at level 1).
Notation "
a !!
b" := (
PMap.get b a) (
at level 1).
Notation "
a !
b <-
c" := (
PTree.set b c a) (
at level 1,
b at next level).
Module IndexedPair(
X Y:
INDEXED_TYPE).
Definition t := (
X.t *
Y.t)%
type.
Fixpoint indexp (
t1 t2 :
positive) :
positive :=
match t1,
t2 with
|
xH ,
xH =>
xH
|
xH ,
xO p2 =>
xI(
xI(
xO(
p2)))
|
xH ,
xI p2 =>
xI(
xI(
xI(
p2)))
|
xO p1,
xH =>
xI(
xO(
xO(
p1)))
|
xO p1,
xO p2 =>
xO(
xO(
xO(
indexp p1 p2)))
|
xO p1,
xI p2 =>
xO(
xO(
xI(
indexp p1 p2)))
|
xI p1,
xH =>
xI(
xO(
xI(
p1)))
|
xI p1,
xO p2 =>
xO(
xI(
xO(
indexp p1 p2)))
|
xI p1,
xI p2 =>
xO(
xI(
xI(
indexp p1 p2)))
end.
Lemma indexp_inj:
forall (
p1 p2 q1 q2:
positive),
indexp p1 p2 =
indexp q1 q2 ->
p1 =
q1 /\
p2 =
q2.
Proof.
intro p1.
induction p1 as [p IH|p IH|];
intros p2 q1 q2;
destruct p2; destruct q1; destruct q2;
intro H; try discriminate; try reflexivity; simpl in H;
try injection H as H1; try apply IH in H1;
try destruct H1; try split; try congruence.
Qed.
Definition index (
p:
X.t *
Y.t):
positive :=
match p with (
a,
b) =>
indexp (
X.index a) (
Y.index b)
end.
Lemma index_inj:
forall (
x y:
X.t *
Y.t),
index x =
index y ->
x =
y.
Proof.
intros x y.
destruct x.
destruct y.
unfold index.
intro H.
apply indexp_inj in H.
destruct H as [
H1 H2].
apply X.index_inj in H1.
apply Y.index_inj in H2.
congruence.
Qed.
Lemma eq:
forall (
x y:
X.t *
Y.t), {
x =
y} + {
x <>
y}.
Proof.
decide equality;
try apply Y.eq;
try apply X.eq.
Qed.
End IndexedPair.
Module ZZIndexed :=
IndexedPair(
ZIndexed)(
ZIndexed).
Module ZZMap :=
IMap(
ZZIndexed).