This module defines the type of values that is used in the dynamic
semantics of all our intermediate languages.
Require Import Coqlib.
Require Import Ast.
Require Import Integers.
Require Import Floats.
Require Import Pointers.
Require Import Vlib.
A value is either:
-
a machine integer;
-
a floating-point number;
-
a pointer: a pair of a memory address and an integer offset with respect
to this address;
-
the Vundef value denoting an arbitrary bit pattern, such as the
value of an uninitialized variable.
Inductive val:
Type :=
|
Vundef:
val
|
Vint:
int ->
val
|
Vfloat:
float ->
val
|
Vptr:
pointer ->
val.
Definition Vzero:
val :=
Vint Int.zero.
Definition Vone:
val :=
Vint Int.one.
Definition Vmone:
val :=
Vint Int.mone.
Definition Vtrue:
val :=
Vint Int.one.
Definition Vfalse:
val :=
Vint Int.zero.
The module Val defines a number of arithmetic and logical operations
over type val. Most of these operations are straightforward extensions
of the corresponding integer or floating-point operations.
Module Val.
Lemma eq_dec:
forall (
x y:
val), {
x=
y} + {
x<>
y}.
Proof.
Definition of_bool (
b:
bool):
val :=
if b then Vtrue else Vfalse.
Definition of_bool3 (
b:
bool3):
val :=
match b with
|
b3_true =>
Vtrue
|
b3_false =>
Vfalse
|
b3_unknown =>
Vundef
end.
Definition option_bool_of_bool3 (
b:
bool3):
option bool :=
match b with
|
b3_true =>
Some true
|
b3_false =>
Some false
|
b3_unknown =>
None
end.
Definition option_val_of_bool3 (
b:
bool3):
option val :=
match b with
|
b3_true =>
Some Vtrue
|
b3_false =>
Some Vfalse
|
b3_unknown =>
None
end.
Definition has_type (
v:
val) (
t:
typ) :
bool :=
match v,
t with
|
Vundef,
_ =>
true
|
Vint _,
Tint =>
true
|
Vfloat _,
Tfloat =>
true
|
Vptr _,
Tint =>
true
|
_,
_ =>
false
end.
Fixpoint has_type_list (
vl:
list val) (
tl:
list typ) {
struct vl} :
bool :=
match vl,
tl with
|
nil,
nil =>
true
|
v1 ::
vs,
t1 ::
ts =>
has_type v1 t1 &&
has_type_list vs ts
|
_,
_ =>
false
end.
Force a value to have a given type (by returning Vundef if it does not
have the right type). This is used for ensuring that the values on
MEwrite and Ecall edges have the right types.
Definition conv (
v:
val) (
t:
typ) :
val :=
match v,
t with
|
Vint _,
Tint =>
v
|
Vfloat _,
Tfloat =>
v
|
Vptr _,
Tint =>
v
|
_,
_ =>
Vundef
end.
Fixpoint conv_list (
vl:
list val) (
tl:
list typ) {
struct tl} :
list val :=
match tl with
|
nil =>
nil
|
t1 ::
ts =>
match vl with
|
nil =>
Vundef ::
conv_list nil ts
|
v1 ::
vs =>
conv v1 t1 ::
conv_list vs ts
end
end.
Truth values. Pointers and non-zero integers are treated as True.
The integer 0 (also used to represent the null pointer) is False.
Vundef and floats are neither true nor false.
Definition is_true (
v:
val) :
Prop :=
match v with
|
Vint n =>
n <>
Int.zero
|
Vptr _ =>
True
|
_ =>
False
end.
Definition is_false (
v:
val) :
Prop :=
match v with
|
Vint n =>
n =
Int.zero
|
_ =>
False
end.
Inductive bool_of_val:
val ->
bool ->
Prop :=
|
bool_of_val_int_true:
forall n,
n <>
Int.zero ->
bool_of_val (
Vint n)
true
|
bool_of_val_int_false:
bool_of_val (
Vint Int.zero)
false
|
bool_of_val_ptr_true:
forall p,
bool_of_val (
Vptr p)
true.
Definition neg (
v:
val) :
val :=
match v with
|
Vint n =>
Vint (
Int.neg n)
|
_ =>
Vundef
end.
Definition negf (
v:
val) :
val :=
match v with
|
Vfloat f =>
Vfloat (
Float.neg f)
|
_ =>
Vundef
end.
Definition absf (
v:
val) :
val :=
match v with
|
Vfloat f =>
Vfloat (
Float.abs f)
|
_ =>
Vundef
end.
Definition intoffloat (
v:
val) :
val :=
match v with
|
Vfloat f =>
Vint (
Float.intoffloat f)
|
_ =>
Vundef
end.
Definition intuoffloat (
v:
val) :
val :=
match v with
|
Vfloat f =>
Vint (
Float.intuoffloat f)
|
_ =>
Vundef
end.
Definition floatofint (
v:
val) :
val :=
match v with
|
Vint n =>
Vfloat (
Float.floatofint n)
|
_ =>
Vundef
end.
Definition floatofintu (
v:
val) :
val :=
match v with
|
Vint n =>
Vfloat (
Float.floatofintu n)
|
_ =>
Vundef
end.
Definition notint (
v:
val) :
val :=
match v with
|
Vint n =>
Vint (
Int.xor n Int.mone)
|
_ =>
Vundef
end.
Definition notbool (
v:
val) :
val :=
match v with
|
Vint n =>
of_bool (
Int.eq n Int.zero)
|
Vptr _ =>
Vfalse
|
_ =>
Vundef
end.
sign v = -1 if v < 0; sign v = 0 if v >= 0
Definition sign (
v:
val) :
val :=
match v with
|
Vint n =>
if zlt (
Int.signed n) 0
then Vmone else Vzero
|
_ =>
Vundef
end.
Definition zero_ext (
nbits:
Z) (
v:
val) :
val :=
match v with
|
Vint n =>
Vint(
Int.zero_ext nbits n)
|
_ =>
Vundef
end.
Definition sign_ext (
nbits:
Z) (
v:
val) :
val :=
match v with
|
Vint n =>
Vint(
Int.sign_ext nbits n)
|
_ =>
Vundef
end.
Definition singleoffloat (
v:
val) :
val :=
match v with
|
Vfloat f =>
Vfloat(
Float.singleoffloat f)
|
_ =>
Vundef
end.
Definition add (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.add n1 n2)
|
Vptr p1,
Vint n2 =>
Vptr (
Ptr.add p1 n2)
|
Vint n1,
Vptr p2 =>
Vptr (
Ptr.add p2 n1)
|
_,
_ =>
Vundef
end.
Definition sub (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.sub n1 n2)
|
Vptr p1,
Vint n2 =>
Vptr(
Ptr.sub_int p1 n2)
|
Vptr p1,
Vptr p2 =>
match Ptr.sub_ptr p1 p2 with
|
Some i =>
Vint i
|
None =>
Vundef
end
|
_,
_ =>
Vundef
end.
Definition mul (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.mul n1 n2)
|
_,
_ =>
Vundef
end.
Definition divs (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.eq n2 Int.zero then Vundef else Vint(
Int.divs n1 n2)
|
_,
_ =>
Vundef
end.
Definition mods (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.eq n2 Int.zero then Vundef else Vint(
Int.mods n1 n2)
|
_,
_ =>
Vundef
end.
Definition divu (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.eq n2 Int.zero then Vundef else Vint(
Int.divu n1 n2)
|
_,
_ =>
Vundef
end.
Definition modu (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.eq n2 Int.zero then Vundef else Vint(
Int.modu n1 n2)
|
_,
_ =>
Vundef
end.
Definition and (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.and n1 n2)
|
_,
_ =>
Vundef
end.
Definition or (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.or n1 n2)
|
_,
_ =>
Vundef
end.
Definition xor (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
Vint(
Int.xor n1 n2)
|
_,
_ =>
Vundef
end.
Definition shl (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.shl n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition shr (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.shr n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition shr_carry (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.shr_carry n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition shrx (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.shrx n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition shru (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.shru n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition rolm (
v:
val) (
amount mask:
int):
val :=
match v with
|
Vint n =>
Vint(
Int.rolm n amount mask)
|
_ =>
Vundef
end.
Definition ror (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.ror n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition rol (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
if Int.ltu n2 (
Int.repr 32)
then Vint(
Int.rol n1 n2)
else Vundef
|
_,
_ =>
Vundef
end.
Definition addf (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vfloat f1,
Vfloat f2 =>
Vfloat(
Float.add f1 f2)
|
_,
_ =>
Vundef
end.
Definition subf (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vfloat f1,
Vfloat f2 =>
Vfloat(
Float.sub f1 f2)
|
_,
_ =>
Vundef
end.
Definition mulf (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vfloat f1,
Vfloat f2 =>
Vfloat(
Float.mul f1 f2)
|
_,
_ =>
Vundef
end.
Definition divf (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vfloat f1,
Vfloat f2 =>
Vfloat(
Float.div f1 f2)
|
_,
_ =>
Vundef
end.
Definition cmp_mismatch (
c:
comparison):
val :=
match c with
|
Ceq =>
Vfalse
|
Cne =>
Vtrue
|
_ =>
Vundef
end.
Definition cmp (
c:
comparison) (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
of_bool (
Int.cmp c n1 n2)
|
Vint n1,
Vptr _ =>
if Int.eq n1 Int.zero then cmp_mismatch c else Vundef
|
Vptr p1,
Vptr p2 =>
of_bool3 (
Ptr.cmp c p1 p2)
|
Vptr _,
Vint n2 =>
if Int.eq n2 Int.zero then cmp_mismatch c else Vundef
|
_,
_ =>
Vundef
end.
Definition cmpu (
c:
comparison) (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vint n1,
Vint n2 =>
of_bool (
Int.cmpu c n1 n2)
|
Vint n1,
Vptr _ =>
if Int.eq n1 Int.zero then cmp_mismatch c else Vundef
|
Vptr p1,
Vptr p2 =>
of_bool3 (
Ptr.cmpu c p1 p2)
|
Vptr _,
Vint n2 =>
if Int.eq n2 Int.zero then cmp_mismatch c else Vundef
|
_,
_ =>
Vundef
end.
Definition cmpf (
c:
comparison) (
v1 v2:
val):
val :=
match v1,
v2 with
|
Vfloat f1,
Vfloat f2 =>
of_bool (
Float.cmp c f1 f2)
|
_,
_ =>
Vundef
end.
load_result is used in the memory model (library Mem)
to post-process the results of a memory read. For instance,
consider storing the integer value 0xFFF on 1 byte at a
given address, and reading it back. If it is read back with
chunk Mint8unsigned, zero-extension must be performed, resulting
in 0xFF. If it is read back as a Mint8signed, sign-extension
is performed and 0xFFFFFFFF is returned. Type mismatches
(e.g. reading back a float as a Mint32) read back as Vundef.
Definition load_result (
chunk:
memory_chunk) (
v:
val) :=
match chunk,
v with
|
Mint8signed,
Vint n =>
Vint (
Int.sign_ext 8
n)
|
Mint8unsigned,
Vint n =>
Vint (
Int.zero_ext 8
n)
|
Mint16signed,
Vint n =>
Vint (
Int.sign_ext 16
n)
|
Mint16unsigned,
Vint n =>
Vint (
Int.zero_ext 16
n)
|
Mint32,
Vint n =>
Vint n
|
Mint32,
Vptr p =>
Vptr p
|
Mfloat32,
Vfloat f =>
Vfloat(
Float.singleoffloat f)
|
Mfloat64,
Vfloat f =>
Vfloat f
|
_,
_ =>
Vundef
end.
Theorems on arithmetic operations.
Theorem cast8unsigned_and:
forall x,
zero_ext 8
x =
and x (
Vint(
Int.repr 255)).
Proof.
destruct x;
simpl;
auto.
decEq.
change 255
with (
two_p 8 - 1).
apply Int.zero_ext_and.
vm_compute;
auto.
Qed.
Theorem cast16unsigned_and:
forall x,
zero_ext 16
x =
and x (
Vint(
Int.repr 65535)).
Proof.
destruct x;
simpl;
auto.
decEq.
change 65535
with (
two_p 16 - 1).
apply Int.zero_ext_and.
vm_compute;
auto.
Qed.
Theorem istrue_not_isfalse:
forall v,
is_false v ->
is_true (
notbool v).
Proof.
destruct v; simpl. try contradiction.
intros. subst i. simpl. discriminate. auto. auto.
Qed.
Theorem isfalse_not_istrue:
forall v,
is_true v ->
is_false (
notbool v).
Proof.
Theorem bool_of_true_val:
forall v,
is_true v ->
bool_of_val v true.
Proof.
intro. destruct v; simpl; intros; try contradiction.
constructor; auto. constructor.
Qed.
Theorem bool_of_true_val2:
forall v,
bool_of_val v true ->
is_true v.
Proof.
intros. inversion H; simpl; auto.
Qed.
Theorem bool_of_true_val_inv:
forall v b,
is_true v ->
bool_of_val v b ->
b =
true.
Proof.
intros. inversion H0; subst v b; simpl in H; auto.
Qed.
Theorem bool_of_false_val:
forall v,
is_false v ->
bool_of_val v false.
Proof.
intro. destruct v; simpl; intros; try contradiction.
subst i; constructor.
Qed.
Theorem bool_of_false_val2:
forall v,
bool_of_val v false ->
is_false v.
Proof.
intros. inversion H; simpl; auto.
Qed.
Theorem bool_of_false_val_inv:
forall v b,
is_false v ->
bool_of_val v b ->
b =
false.
Proof.
intros. inversion H0; subst v b; simpl in H.
congruence. auto. contradiction.
Qed.
Theorem notbool_negb_1:
forall b,
of_bool (
negb b) =
notbool (
of_bool b).
Proof.
destruct b; reflexivity.
Qed.
Theorem notbool_negb_2:
forall b,
of_bool b =
notbool (
of_bool (
negb b)).
Proof.
destruct b; reflexivity.
Qed.
Theorem notbool_idem2:
forall b,
notbool(
notbool(
of_bool b)) =
of_bool b.
Proof.
destruct b; reflexivity.
Qed.
Theorem notbool_idem3:
forall x,
notbool(
notbool(
notbool x)) =
notbool x.
Proof.
Theorem add_commut:
forall x y,
add x y =
add y x.
Proof.
destruct x;
destruct y;
simpl;
auto.
decEq.
apply Int.add_commut.
Qed.
Theorem add_assoc:
forall x y z,
add (
add x y)
z =
add x (
add y z).
Proof.
Theorem add_permut:
forall x y z,
add x (
add y z) =
add y (
add x z).
Proof.
Theorem add_permut_4:
forall x y z t,
add (
add x y) (
add z t) =
add (
add x z) (
add y t).
Proof.
intros.
rewrite add_permut;
try apply add_not_scratch;
auto.
rewrite add_assoc;
auto.
rewrite add_permut;
try apply add_not_scratch;
auto.
symmetry.
apply add_assoc;
try apply add_not_scratch;
auto.
Qed.
Theorem neg_zero:
neg Vzero =
Vzero.
Proof.
reflexivity.
Qed.
Theorem neg_add_distr:
forall x y,
neg(
add x y) =
add (
neg x) (
neg y).
Proof.
Theorem sub_zero_r:
forall x,
sub Vzero x =
neg x.
Proof.
destruct x; simpl; auto.
Qed.
Theorem sub_add_opp:
forall x y,
sub x (
Vint y) =
add x (
Vint (
Int.neg y)).
Proof.
destruct x;
intro y;
try destruct p;
simpl;
try rewrite Int.sub_add_opp;
auto.
Qed.
Theorem sub_opp_add:
forall x y,
sub x (
Vint (
Int.neg y)) =
add x (
Vint y).
Proof.
Theorem sub_add_l:
forall v1 v2 i,
sub (
add v1 (
Vint i))
v2 =
add (
sub v1 v2) (
Vint i).
Proof.
destruct v1;
destruct v2;
intros;
simpl;
auto.
rewrite Int.sub_add_l.
auto.
destruct p.
simpl;
rewrite Int.sub_add_l;
auto.
destruct p;
destruct p0;
simpl;
try rewrite Int.sub_add_l;
destruct (
zeq z z0);
auto.
Qed.
Theorem sub_add_r:
forall v1 v2 i,
sub v1 (
add v2 (
Vint i)) =
add (
sub v1 v2) (
Vint (
Int.neg i)).
Proof.
Theorem mul_commut:
forall x y,
mul x y =
mul y x.
Proof.
destruct x;
destruct y;
simpl;
auto.
decEq.
apply Int.mul_commut.
Qed.
Theorem mul_assoc:
forall x y z,
mul (
mul x y)
z =
mul x (
mul y z).
Proof.
destruct x;
destruct y;
destruct z;
simpl;
auto.
decEq.
apply Int.mul_assoc.
Qed.
Theorem mul_add_distr_l:
forall x y z,
mul (
add x y)
z =
add (
mul x z) (
mul y z).
Proof.
Theorem mul_add_distr_r:
forall x y z,
mul x (
add y z) =
add (
mul x y) (
mul x z).
Proof.
Theorem mul_pow2:
forall x n logn,
Int.is_power2 n =
Some logn ->
mul x (
Vint n) =
shl x (
Vint logn).
Proof.
Theorem mods_divs:
forall x y,
mods x y =
sub x (
mul (
divs x y)
y).
Proof.
Theorem modu_divu:
forall x y,
modu x y =
sub x (
mul (
divu x y)
y).
Proof.
Theorem divs_pow2:
forall x n logn,
Int.is_power2 n =
Some logn ->
divs x (
Vint n) =
shrx x (
Vint logn).
Proof.
Theorem divu_pow2:
forall x n logn,
Int.is_power2 n =
Some logn ->
divu x (
Vint n) =
shru x (
Vint logn).
Proof.
Theorem modu_pow2:
forall x n logn,
Int.is_power2 n =
Some logn ->
modu x (
Vint n) =
and x (
Vint (
Int.sub n Int.one)).
Proof.
Theorem and_commut:
forall x y,
and x y =
and y x.
Proof.
destruct x;
destruct y;
simpl;
auto.
decEq.
apply Int.and_commut.
Qed.
Theorem and_assoc:
forall x y z,
and (
and x y)
z =
and x (
and y z).
Proof.
destruct x;
destruct y;
destruct z;
simpl;
auto.
decEq.
apply Int.and_assoc.
Qed.
Theorem or_commut:
forall x y,
or x y =
or y x.
Proof.
destruct x;
destruct y;
simpl;
auto.
decEq.
apply Int.or_commut.
Qed.
Theorem or_assoc:
forall x y z,
or (
or x y)
z =
or x (
or y z).
Proof.
destruct x;
destruct y;
destruct z;
simpl;
auto.
decEq.
apply Int.or_assoc.
Qed.
Theorem xor_commut:
forall x y,
xor x y =
xor y x.
Proof.
destruct x;
destruct y;
simpl;
auto.
decEq.
apply Int.xor_commut.
Qed.
Theorem xor_assoc:
forall x y z,
xor (
xor x y)
z =
xor x (
xor y z).
Proof.
destruct x;
destruct y;
destruct z;
simpl;
auto.
decEq.
apply Int.xor_assoc.
Qed.
Theorem shl_mul:
forall x y,
Val.mul x (
Val.shl Vone y) =
Val.shl x y.
Proof.
Theorem shl_rolm:
forall x n,
Int.ltu n (
Int.repr 32) =
true ->
shl x (
Vint n) =
rolm x n (
Int.shl Int.mone n).
Proof.
intros;
destruct x;
simpl;
auto.
rewrite H.
decEq.
apply Int.shl_rolm.
exact H.
Qed.
Theorem shru_rolm:
forall x n,
Int.ltu n (
Int.repr 32) =
true ->
shru x (
Vint n) =
rolm x (
Int.sub (
Int.repr 32)
n) (
Int.shru Int.mone n).
Proof.
intros;
destruct x;
simpl;
auto.
rewrite H.
decEq.
apply Int.shru_rolm.
exact H.
Qed.
Theorem shrx_carry:
forall x y,
add (
shr x y) (
shr_carry x y) =
shrx x y.
Proof.
Theorem or_rolm:
forall x n m1 m2,
or (
rolm x n m1) (
rolm x n m2) =
rolm x n (
Int.or m1 m2).
Proof.
intros;
destruct x;
simpl;
auto.
decEq.
apply Int.or_rolm.
Qed.
Theorem rolm_rolm:
forall x n1 m1 n2 m2,
rolm (
rolm x n1 m1)
n2 m2 =
rolm x (
Int.and (
Int.add n1 n2) (
Int.repr 31))
(
Int.and (
Int.rol m1 n2)
m2).
Proof.
Theorem rolm_zero:
forall x m,
rolm x Int.zero m =
and x (
Vint m).
Proof.
intros;
destruct x;
simpl;
auto.
decEq.
apply Int.rolm_zero.
Qed.
Theorem addf_commut:
forall x y,
addf x y =
addf y x.
Proof.
Lemma negate_cmp_mismatch:
forall c,
cmp_mismatch (
negate_comparison c) =
notbool(
cmp_mismatch c).
Proof.
destruct c; reflexivity.
Qed.
Theorem negate_cmp:
forall c x y,
cmp (
negate_comparison c)
x y =
notbool (
cmp c x y).
Proof.
Theorem negate_cmpu:
forall c x y,
cmpu (
negate_comparison c)
x y =
notbool (
cmpu c x y).
Proof.
Lemma swap_cmp_mismatch:
forall c,
cmp_mismatch (
swap_comparison c) =
cmp_mismatch c.
Proof.
destruct c; reflexivity.
Qed.
Require Import NZAxioms.
Theorem swap_cmp:
forall c x y,
cmp (
swap_comparison c)
x y =
cmp c y x.
Proof.
Theorem swap_cmpu:
forall c x y,
cmpu (
swap_comparison c)
x y =
cmpu c y x.
Proof.
Theorem negate_cmpf_eq:
forall v1 v2,
notbool (
cmpf Cne v1 v2) =
cmpf Ceq v1 v2.
Proof.
Theorem negate_cmpf_ne:
forall v1 v2,
notbool (
cmpf Ceq v1 v2) =
cmpf Cne v1 v2.
Proof.
Lemma or_of_bool:
forall b1 b2,
or (
of_bool b1) (
of_bool b2) =
of_bool (
b1 ||
b2).
Proof.
destruct b1; destruct b2; reflexivity.
Qed.
Theorem cmpf_le:
forall v1 v2,
cmpf Cle v1 v2 =
or (
cmpf Clt v1 v2) (
cmpf Ceq v1 v2).
Proof.
Theorem cmpf_ge:
forall v1 v2,
cmpf Cge v1 v2 =
or (
cmpf Cgt v1 v2) (
cmpf Ceq v1 v2).
Proof.
Definition is_bool (
v:
val) :=
v =
Vundef \/
v =
Vtrue \/
v =
Vfalse.
Lemma of_bool_is_bool:
forall b,
is_bool (
of_bool b).
Proof.
destruct b; unfold is_bool; simpl; tauto.
Qed.
Lemma undef_is_bool:
is_bool Vundef.
Proof.
unfold is_bool; tauto.
Qed.
Lemma cmp_mismatch_is_bool:
forall c,
is_bool (
cmp_mismatch c).
Proof.
destruct c; simpl; unfold is_bool; tauto.
Qed.
Lemma cmp_is_bool:
forall c v1 v2,
is_bool (
cmp c v1 v2).
Proof.
Lemma cmpu_is_bool:
forall c v1 v2,
is_bool (
cmpu c v1 v2).
Proof.
Lemma cmpf_is_bool:
forall c v1 v2,
is_bool (
cmpf c v1 v2).
Proof.
Lemma notbool_is_bool:
forall v,
is_bool (
notbool v).
Proof.
Lemma notbool_xor:
forall v,
is_bool v ->
v =
xor (
notbool v)
Vone.
Proof.
intros. elim H; intro.
subst v. reflexivity.
elim H0; intro; subst v; reflexivity.
Qed.
Lemma rolm_lt_zero:
forall v,
rolm v Int.one Int.one =
cmp Clt v (
Vint Int.zero).
Proof.
Lemma rolm_ge_zero:
forall v,
xor (
rolm v Int.one Int.one) (
Vint Int.one) =
cmp Cge v (
Vint Int.zero).
Proof.
The ``is less defined'' relation between values.
A value is less defined than itself, and Vundef is
less defined than any value.
Inductive lessdef:
val ->
val ->
Prop :=
|
lessdef_refl:
forall v,
lessdef v v
|
lessdef_undef:
forall v,
lessdef Vundef v.
Inductive lessdef_list:
list val ->
list val ->
Prop :=
|
lessdef_list_nil:
lessdef_list nil nil
|
lessdef_list_cons:
forall v1 v2 vl1 vl2,
lessdef v1 v2 ->
lessdef_list vl1 vl2 ->
lessdef_list (
v1 ::
vl1) (
v2 ::
vl2).
Hint Resolve lessdef_refl lessdef_undef lessdef_list_nil lessdef_list_cons.
Lemma lessdef_list_inv:
forall vl1 vl2,
lessdef_list vl1 vl2 ->
vl1 =
vl2 \/
In Vundef vl1.
Proof.
induction 1; simpl.
tauto.
inv H. destruct IHlessdef_list.
left; congruence. tauto. tauto.
Qed.
Lemma lessdef_list_refl:
forall vl,
lessdef_list vl vl.
Proof.
by intro vl; induction vl; constructor.
Qed.
Lemma load_result_lessdef:
forall chunk v1 v2,
lessdef v1 v2 ->
lessdef (
load_result chunk v1) (
load_result chunk v2).
Proof.
intros. inv H. auto. destruct chunk; simpl; auto.
Qed.
Lemma zero_ext_lessdef:
forall n v1 v2,
lessdef v1 v2 ->
lessdef (
zero_ext n v1) (
zero_ext n v2).
Proof.
intros; inv H; simpl; auto.
Qed.
Lemma sign_ext_lessdef:
forall n v1 v2,
lessdef v1 v2 ->
lessdef (
sign_ext n v1) (
sign_ext n v2).
Proof.
intros; inv H; simpl; auto.
Qed.
Lemma singleoffloat_lessdef:
forall v1 v2,
lessdef v1 v2 ->
lessdef (
singleoffloat v1) (
singleoffloat v2).
Proof.
intros; inv H; simpl; auto.
Qed.
Lemma load_result_wt:
forall chunk v,
has_type (
load_result chunk v) (
type_of_chunk chunk).
Proof.
by intros; case chunk; case v.
Qed.
Lemma has_type_lessdef:
forall v1 t v2,
lessdef v1 v2 ->
has_type v2 t ->
has_type v1 t.
Proof.
by destruct 1.
Qed.
Lemma lessdef_list_length:
forall {
l l'} (
LD :
Val.lessdef_list l l'),
length l =
length l'.
Proof.
induction l; intros. by inv LD.
inv LD. simpl; f_equal. eauto.
Qed.
Lemma conv_wt:
forall v typ,
has_type (
conv v typ)
typ.
Proof.
by intros;
case v;
case typ. Qed.
Lemma conv_wt2:
forall v t,
Val.has_type v t ->
Val.conv v t =
v.
Proof.
by destruct v; destruct t. Qed.
Lemma conv_list_wt:
forall vl tl,
has_type_list (
conv_list vl tl)
tl.
Proof.
intros;
revert vl.
elim tl;
intros;
simpl;
try done.
by case vl;
intros;
simpl; [|
rewrite conv_wt;
simpl].
Qed.
Lemma conv_list_wt2:
forall vl tl,
Val.has_type_list vl tl ->
Val.conv_list vl tl =
vl.
Proof.
induction vl;
destruct tl;
simpl;
try done.
by intros X;
destruct (
andP X);
rewrite conv_wt2,
IHvl.
Qed.
Lemma conv_lessdef:
forall typ v1 v2,
lessdef v1 v2 ->
lessdef (
conv v1 typ) (
conv v2 typ).
Proof.
by destruct 1; constructor.
Qed.
Lemma conv_list_lessdef:
forall tl v1 v2,
lessdef_list v1 v2 ->
lessdef_list (
conv_list v1 tl) (
conv_list v2 tl).
Proof.
intro tl;
elim tl;
simpl;
try done.
intros a l IH v1 v2.
by destruct v1;
destruct v2;
simpl;
intro H;
inv H;
constructor;
auto using lessdef_list_refl,
conv_lessdef.
Qed.
Definition lessdef_sum {
A} (
vs1 vs2 :
A +
val) :=
match vs1,
vs2 with
|
inl a1,
inl a2 =>
a1 =
a2
|
inr v1,
inr v2 =>
Val.lessdef v1 v2
|
_,
_ =>
False
end.
Definition lessdef_listsum {
A} (
l1 l2 :
list (
A +
val)) :=
list_forall2 lessdef_sum l1 l2.
End Val.