Std_kernel
Modules imported from Base without modification
module Applicative = Base.Applicativemodule Avltree = Base.Avltreemodule Backtrace = Base.Backtracemodule Binary_search = Base.Binary_searchmodule Buffer = Base.Buffermodule Comparisons = Base.Comparisonsmodule Continue_or_stop = Base.Continue_or_stopmodule Equal = Base.Equalmodule Exn = Base.Exnmodule Expect_test_config = Expect_test_configmodule Field = Fieldslib.Fieldmodule Floatable = Base.Floatablemodule Formatter = Base.Formattermodule Hash = Base.Hashmodule Heap_block : sig ... endA heap block is a value that is guaranteed to live on the OCaml heap, and is hence guaranteed to be usable with finalization or in a weak pointer.
module In_channel = Stdio.In_channelmodule Int_conversions = Base.Int_conversionsmodule Int_math = Base.Int_mathmodule Intable = Base.Intablemodule Invariant = Base.Invariantmodule Monad = Base.Monadmodule Ordered_collection_common : sig ... endThis module extends Base.Ordered_collection_common.
module Out_channel = Stdio.Out_channelmodule Poly = Base.Polymodule Polymorphic_compare = Polymodule Pretty_printer = Base.Pretty_printermodule Random = Base.Randommodule Sexp_maybe = Sexp.Sexp_maybemodule Staged = Base.Stagedmodule Stringable = Base.Stringablemodule Uchar = Base.Ucharmodule Validate = Base.Validatemodule Variant = Variantslib.Variantmodule With_return = Base.With_returnmodule Word_size = Base.Word_sizeModules that extend Base
module Array : sig ... endThis module extends Base.Array.
module Binary_searchable : sig ... endThis module extends the Base.Binary_searchable module.
module Bytes : sig ... endThis module extends Base.Bytes.
module Char : sig ... endThis module extends Base.Char, adding Identifiable for making char identifiers and Quickcheckable to facilitate automated testing with pseudorandom data.
module Comparable : sig ... endComparable extends Base.Comparable and provides functions for comparing like types.
module Comparator : sig ... endExtends Base.Comparator, providing a type-indexed value that allows you to compare values of that type.
module Container : sig ... endProvides generic signatures for container data structures.
module Either : sig ... endThis module extends Base.Either.
module Error : sig ... endThis module extends Base.Error with bin_io.
module Float : sig ... endFloating-point numbers.
module Hash_set : sig ... endA mutable set of elements.
module Hashtbl : sig ... endmodule Hashtbl_intf : sig ... endHashtbl is a reimplementation of the standard MoreLabels.Hashtbl. Its worst case time complexity is O(log(N)) for lookups and additions, unlike the standard MoreLabels.Hashtbl, which is O(N).
module Info : sig ... endThis module extends Base.Info, which provides a type for info-level debug messages.
module Int_intf : sig ... endThis module extends Base.Int_intf.
module Int32 : sig ... endThis module extends Base.Int32.
module Int63 : sig ... endThis module extends Base.Int63.
module Int64 : sig ... endThis module extends Base.Int64.
module Linked_queue : sig ... endThis module extends the Base.Linked_queue module with bin_io support. As a reminder, the Base.Linked_queue module is a wrapper around OCaml's standard Queue module that follows Base idioms and adds some functions.
module Maybe_bound : sig ... endThis module extends Base.Maybe_bound with bin_io and with compare functions in the form of As_lower_bound and As_upper_bound modules.
module Nativeint : sig ... endThis module extends Base.Nativeint.
module Option : sig ... endThis module extends Base.Option with bin_io and quickcheck.
module Ordering : sig ... endExtends Base.Ordering, intended to make code that matches on the result of a comparison more concise and easier to read.
module Or_error : sig ... endThis module extends Base.Or_error with bin_io.
module Printf : sig ... endThis module extends Base.Printf.
module Result : sig ... endThis module extends Base.Result.
module Sequence : sig ... endThis module extends Base.Sequence with bin_io.
module Set : sig ... endThis module defines the Set module for Core. Functions that construct a set take as an argument the comparator for the element type.
module Sexp : sig ... endCode for managing s-expressions.
module Sexpable : sig ... endThis module extends Base.Sexpable.
module Sign_or_nan : sig ... endThis module extends Base.Sign_or_nan with bin_io.
module Source_code_position : sig ... endThis module extends Base.Source_code_position.
module String : sig ... endThis module extends Base.String.
module Type_equal : sig ... endThis module extends Base.Type_equal.
module Unit : sig ... endModule for the type unit, extended from Base.Unit. This is mostly useful for building functor arguments.
Modules added by Core_kernel
module Arg : sig ... endINRIA's original command-line parsing library.
module Bag : sig ... endmodule Bigbuffer : sig ... endExtensible string buffers based on Bigstrings.
module Bigsubstring : sig ... endSubstring type based on Bigarray, for use in I/O and C-bindings
module Binable : sig ... endModule types and utilities for dealing with types that support the bin-io binary encoding.
module Bin_prot : sig ... endmodule Blang : sig ... endBoolean expressions.
module Bounded_index : sig ... endmodule Bus : sig ... endA Bus is a publisher/subscriber system within the memory space of the program. A bus has a mutable set of subscribers, which can be modified using subscribe_exn and unsubscribe.
module Byte_units : sig ... endConversions between units of measure that are based on bytes (like kilobytes, megabytes, gigabytes, and words).
module Day_of_week : sig ... endProvides a variant type for days of the week (Mon, Tue, etc.) and convenience functions for converting these days into other formats, like seconds since the epoch.
module Debug : sig ... endUtilities for printing debug messages.
module Deque : sig ... endA double-ended queue that can shrink and expand on both ends.
module Deriving_hash : sig ... endGenerates hash functions from type expressions and definitions.
module Doubly_linked : sig ... endmodule Ephemeron : sig ... endAn ephemeron is a pair of pointers, one to a "key" and one to "data".
module Fdeque : sig ... endA simple polymorphic functional double-ended queue. Use this if you need a queue-like data structure that provides enqueue and dequeue accessors on both ends. For strictly first-in, first-out access, see Fqueue.
module Float_with_finite_only_serialization : sig ... endAn alias to the Float.t type that causes the sexp and bin-io serializers to fail when provided with nan or infinity.
module Fqueue : sig ... endA simple polymorphic functional queue. Use this data structure for strictly first-in, first-out access to a sequence of values. For a similar data structure with enqueue and dequeue accessors on both ends of a sequence, see Core_kernel.Fdeque.
module Gc : sig ... endThis is a wrapper around INRIA's standard Gc module. Provides memory management control and statistics, and finalized values.
module Hash_queue : sig ... endmodule Hashable : sig ... endFunctors and interfaces used to make modules hashable.
module Hexdump : sig ... endmodule Hexdump_intf : sig ... endA functor for displaying a type as a sequence of ASCII characters printed in hexadecimal.
module Host_and_port : sig ... endType for the commonly-used notion of host and port in networking.
module Identifiable : sig ... endA signature for identifier types.
module Immediate_option : sig ... endmodule Immediate_option_intf : sig ... endA non-allocating alternative to the standard Option type.
module Interfaces : sig ... endVarious interface exports.
module Map : sig ... endMap is a functional data structure (balanced binary tree) implementing finite maps over a totally-ordered domain, called a "key".
module Md5 : sig ... endThis module implements the MD5 message-digest algorithm as described IETF RFC 1321. t is the result type and val digest_string : string -> t is the implementation of the algorithm itself.
module Memo : sig ... endmodule Month : sig ... endProvides a variant type for representing months (e.g., Jan, Feb, or Nov) and functions for converting them to other formats (like an int).
module No_polymorphic_compare : sig ... endOpen this in modules where you don't want to accidentally use polymorphic comparison. Then, use Poly.(<), for example, where needed.
module Nothing : sig ... endAn uninhabited type. This is useful when interfaces require that a type be specified, but the implementer knows this type will not be used in their implementation of the interface.
module Only_in_test : sig ... endThis module can be used to safely expose functions and values in signatures that should only be used in unit tests.
module Option_array : sig ... endThis module extends Base.Option_array with bin_io.
module Optional_syntax : sig ... endInterfaces for use with the match%optional syntax, provided by ppx_optional.
module Percent : sig ... endA scale factor, not bounded between 0% and 100%, represented as a float.
module Perms : sig ... endThese types are intended to be used as phantom types encoding the permissions on a given type.
module Pid : sig ... endProcess ID.
module Popcount = Base.Popcountmodule Printexc : sig ... endThis module is here to ensure that we don't use the functions in Caml.Printexc inadvertently.
module Queue : sig ... endThis module extends Base.Queue with bin_io.
module Quickcheck : sig ... endmodule Quickcheck_intf : sig ... endQuickcheck is a library that uses predicate-based tests and pseudo-random inputs to automate testing.
module Quickcheckable : sig ... endProvides functors for making a module quickcheckable with Quickcheck.
module Robustly_comparable : sig ... endThis interface compares float-like objects with a small tolerance.
module Set_once : sig ... endA 'a Set_once.t is like an 'a option ref that can only be set once. A Set_once.t starts out as None, the first set transitions it to Some, and subsequent sets fail.
module Splittable_random = Splittable_randommodule Stable_comparable : sig ... endmodule Stable_unit_test : sig ... endThe tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.
module Stack : sig ... endmodule String_id : sig ... endLike Identifiable, but with t = private string and stable modules.
module Substring : sig ... endA substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.
module Substring_intf : sig ... endInterface for Substring.
module Tuple : sig ... endFunctors and signatures for dealing with modules for tuples.
module Tuple2 = Tuple.T2module Tuple3 = Tuple.T3module Type_immediacy : sig ... endWitnesses that express whether a type's values are always, sometimes, or never immediate.
module Uniform_array : sig ... endThis module extends Base.Uniform_array with bin_io.
module Union_find : sig ... endImperative data structure for representing disjoint sets.
module Unique_id : sig ... endFunctors for creating modules that mint unique identifiers.
module Unit_of_time : sig ... endRepresents a unit of time, e.g., that used by Time.Span.to_string_hum. Comparison respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.
module Univ_map : sig ... endmodule Validated : sig ... endmodule Weak = Stdlib.Weakmodule type Unique_id = Unique_id.IdTop-level values
val sec : Base.Float.t -> Base.Float.tincluded first so that everything else shadows it
Exceptions
The Exit exception is not raised by any library function. It is provided for use in your programs.
Comparisons
e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises Invalid_argument. Equality between cyclic data structures may not terminate.
Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with ( = ). As in the case of ( = ), mutable structures are compared by contents. Comparison between functional values raises Invalid_argument. Comparison between cyclic structures may not terminate.
compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y. The ordering implemented by compare is compatible with the comparison predicates =, < and > defined above, with one difference on the treatment of the float value Caml.nan. Namely, the comparison predicates treat nan as different from any other float value, including itself; while compare treats nan as equal to itself and less than any other float value. This treatment of nan ensures that compare defines a total ordering relation.
compare applied to functional values may raise Invalid_argument. compare applied to cyclic structures may not terminate.
The compare function can be used as the comparison function required by the Set.Make and Map.Make functors, as well as the List.sort and Array.sort functions.
Return the smaller of the two arguments. The result is unspecified if one of the arguments contains the float value nan.
Return the greater of the two arguments. The result is unspecified if one of the arguments contains the float value nan.
e1 == e2 tests for physical equality of e1 and e2. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2 is true if and only if physical modification of e1 also affects e2. On non-mutable types, the behavior of ( == ) is implementation-dependent; however, it is guaranteed that e1 == e2 implies compare e1 e2 = 0.
Boolean operations
The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first, and if it returns false, e2 is not evaluated at all.
The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated first, and if it returns true, e2 is not evaluated at all.
Debugging
__LOC__ returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
__LINE__ returns the line number at which this expression appears in the file currently being parsed by the compiler.
__POS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.
__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which the expression expr appears in the file currently being parsed by the compiler.
__POS_OF__ expr returns a pair (expr,loc), where loc is a tuple (file,lnum,cnum,enum) corresponding to the location at which the expression expr appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.
Composition operators
Reverse-application operator: x |> f |> g is exactly equivalent to g (f (x)).
- since
- 4.01
Application operator: g @@ f @@ x is exactly equivalent to g (f (x)).
- since
- 4.01
Integer arithmetic
Integer division. Raise Division_by_zero if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover, (- x) / y = x / (- y) = - (x / y).
Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x = (x / y) * y + x mod y and abs(x mod y) <= abs(y) - 1. If y = 0, x mod y raises Division_by_zero. Note that x mod y is negative only if x < 0. Raise Division_by_zero if y is zero.
Return the absolute value of the argument. Note that this may be negative if the argument is min_int.
Bitwise operations
n lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.
n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless of the sign of n. The result is unspecified if m < 0 or m >= bitsize.
n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is replicated. The result is unspecified if m < 0 or m >= bitsize.
Floating-point arithmetic
expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.
- since
- 3.12.0
log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.
- since
- 3.12.0
Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.
Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.
atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.
hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin.
- since
- 4.00.0
Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.
Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.
copysign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.
- since
- 4.00.0
mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.
frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.
Same as Caml.float_of_int.
Same as Caml.int_of_float.
Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.
A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.
The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.
type fpclass = Caml.fpclass = The five classes of floating-point numbers, as determined by the Caml.classify_float function.
val classify_float : float -> fpclassReturn the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
String operations
Character operations
Return the character with the given ASCII code. Raise Invalid_argument "char_of_int" if the argument is outside the range 0--255.
Unit operations
Discard the value of its argument and return (). For instance, ignore(f x) discards the result of the side-effecting function f. It is equivalent to f x; (), except that the latter may generate a compiler warning; writing ignore(f x) instead avoids the warning.
String conversion functions
Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the string is not "true" or "false".
Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x or 0X), octal (if it begins with 0o or 0O), or binary (if it begins with 0b or 0B). Raise Failure "int_of_string" if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int.
Convert the given string to a float. Raise Failure "float_of_string" if the given string is not a valid representation of a float.
Pair operations
List operations
Input/output
type in_channel = Caml.in_channelThe type of input channel.
type out_channel = Caml.out_channelThe type of output channel.
val stdin : Caml.in_channelThe standard input for the process.
val stdout : Caml.out_channelThe standard output for the process.
val stderr : Caml.out_channelThe standard error output for the process.
Output functions on standard output
Print a string, followed by a newline character, on standard output and flush standard output.
Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.
Output functions on standard error
Print a string, followed by a newline character on standard error and flush standard error.
Print a newline character on standard error, and flush standard error.
Input functions on standard input
Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string" if the line read is not a valid representation of an integer.
Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.
General output functions
type open_flag = Caml.open_flag = Opening modes for Caml.open_out_gen and Caml.open_in_gen.
val open_out : string -> Caml.out_channelOpen the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string -> Caml.out_channelSame as Caml.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_out.
val open_out_gen : Caml.open_flag list -> int -> string -> Caml.out_channelopen_out_gen mode perm filename opens the named file for writing, as described above. The extra argument mode specify the opening mode. The extra argument perm specifies the file permissions, in case the file must be created. Caml.open_out and Caml.open_out_bin are special cases of this function.
val flush : Caml.out_channel -> unitFlush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val output_char : Caml.out_channel -> char -> unitWrite the character on the given output channel.
val output_string : Caml.out_channel -> string -> unitWrite the string on the given output channel.
val output_bytes : Caml.out_channel -> bytes -> unitWrite the byte sequence on the given output channel.
val output : Caml.out_channel -> bytes -> int -> int -> unitoutput oc buf pos len writes len characters from byte sequence buf, starting at offset pos, to the given output channel oc. Raise Invalid_argument "output" if pos and len do not designate a valid range of buf.
val output_substring : Caml.out_channel -> string -> int -> int -> unitSame as output but take a string as argument instead of a byte sequence.
val output_byte : Caml.out_channel -> int -> unitWrite one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Caml.out_channel -> int -> unitWrite one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Caml.input_binary_int function. The format is compatible across all machines for a given version of OCaml.
val output_value : Caml.out_channel -> 'a -> unitWrite the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Caml.input_value. See the description of module Marshal for more information. Caml.output_value is equivalent to Marshal.to_channel with an empty list of flags.
val seek_out : Caml.out_channel -> int -> unitseek_out chan pos sets the current writing position to pos for channel chan. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.
val pos_out : Caml.out_channel -> intReturn the current writing position for the given channel. Does not work on channels opened with the Open_append flag (returns unspecified results).
val out_channel_length : Caml.out_channel -> intReturn the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Caml.out_channel -> unitClose the given channel, flushing all buffered write operations. Output functions raise a Sys_error exception when they are applied to a closed output channel, except close_out and flush, which do nothing when applied to an already closed channel. Note that close_out may raise Sys_error if the operating system signals an error when flushing or closing.
val close_out_noerr : Caml.out_channel -> unitSame as close_out, but ignore all errors.
val set_binary_mode_out : Caml.out_channel -> bool -> unitset_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output. set_binary_mode_out oc false sets the channel oc to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
General input functions
val open_in : string -> Caml.in_channelOpen the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string -> Caml.in_channelSame as Caml.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_in.
val open_in_gen : Caml.open_flag list -> int -> string -> Caml.in_channelopen_in_gen mode perm filename opens the named file for reading, as described above. The extra arguments mode and perm specify the opening mode and file permissions. Caml.open_in and Caml.open_in_bin are special cases of this function.
val input_char : Caml.in_channel -> charRead one character from the given input channel. Raise End_of_file if there are no more characters to read.
val input_line : Caml.in_channel -> stringRead characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file if the end of the file is reached at the beginning of line.
val input : Caml.in_channel -> bytes -> int -> int -> intinput ic buf pos len reads up to len characters from the given channel ic, storing them in byte sequence buf, starting at character number pos. It returns the actual number of characters read, between 0 and len (inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len exclusive means that not all requested len characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input must be called again to read the remaining characters, if desired. (See also Caml.really_input for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do not designate a valid range of buf.
val really_input : Caml.in_channel -> bytes -> int -> int -> unitreally_input ic buf pos len reads len characters from channel ic, storing them in byte sequence buf, starting at character number pos. Raise End_of_file if the end of file is reached before len characters have been read. Raise Invalid_argument "really_input" if pos and len do not designate a valid range of buf.
val really_input_string : Caml.in_channel -> int -> stringreally_input_string ic len reads len characters from channel ic and returns them in a new string. Raise End_of_file if the end of file is reached before len characters have been read.
val input_byte : Caml.in_channel -> intSame as Caml.input_char, but return the 8-bit integer representing the character. Raise End_of_file if an end of file was reached.
val input_binary_int : Caml.in_channel -> intRead an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See Caml.output_binary_int. Raise End_of_file if an end of file was reached while reading the integer.
val input_value : Caml.in_channel -> 'aRead the representation of a structured value, as produced by Caml.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.
val seek_in : Caml.in_channel -> int -> unitseek_in chan pos sets the current reading position to pos for channel chan. This works only for regular files. On files of other kinds, the behavior is unspecified.
val pos_in : Caml.in_channel -> intReturn the current reading position for the given channel.
val in_channel_length : Caml.in_channel -> intReturn the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Caml.in_channel -> unitClose the given channel. Input functions raise a Sys_error exception when they are applied to a closed input channel, except close_in, which does nothing when applied to an already closed channel.
val close_in_noerr : Caml.in_channel -> unitSame as close_in, but ignore all errors.
val set_binary_mode_in : Caml.in_channel -> bool -> unitset_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input. set_binary_mode_out ic false sets the channel ic to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
Operations on large files
module LargeFile : sig ... endOperations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), these alternate functions allow operating on files whose sizes are greater than max_int.
References
The type of references (mutable indirection cells) containing a value of type 'a.
val ref : 'a -> 'a refReturn a fresh reference containing the given value.
val (!) : 'a ref -> 'a!r returns the current contents of reference r. Equivalent to fun r -> r.contents.
val (:=) : 'a ref -> 'a -> unitr := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.
val incr : int ref -> unitIncrement the integer contained in the given reference. Equivalent to fun r -> r := succ !r.
val decr : int ref -> unitDecrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.
Operations on format strings
type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6. The two simplified types, format and format4 below are included for backward compatibility with earlier releases of OCaml.
The meaning of format string type parameters is as follows:
'ais the type of the parameters of the format for formatted output functions (printf-style functions);'ais the type of the values read by the format for formatted input functions (scanf-style functions).
'bis the type of input source for formatted input functions and the type of output target for formatted output functions. Forprintf-style functions from modulePrintf,'bis typicallyout_channel; forprintf-style functions from moduleFormat,'bis typicallyFormat.formatter; forscanf-style functions from moduleScanf,'bis typicallyScanf.Scanning.in_channel.
Type argument 'b is also the type of the first argument given to user's defined printing functions for %a and %t conversions, and user's defined reading functions for %r conversion.
'cis the type of the result of the%aand%tprinting functions, and also the type of the argument transmitted to the first argument ofkprintf-style functions or to thekscanf-style functions.
'dis the type of parameters for thescanf-style functions.
'eis the type of the receiver function for thescanf-style functions.
'fis the final result type of a formatted input/output function invocation: for theprintf-style functions, it is typicallyunit; for thescanf-style functions, it is typically the result type of the receiver function.
type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> stringConverts a format string into a string.
format_of_string s returns a format string read from the string literal s. Note: format_of_string can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string function.
val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('f, 'b, 'c, 'e, 'g, 'h) format6 -> ('a, 'b, 'c, 'd, 'g, 'h) format6f1 ^^ f2 catenates format strings f1 and f2. The result is a format string that behaves as the concatenation of format strings f1 and f2: in case of formatted output, it accepts arguments from f1, then arguments from f2; in case of formatted input, it returns results from f1, then results from f2.
Program termination
Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all. An implicit exit 0 is performed each time a program terminates normally. An implicit exit 2 is performed if the program terminates early because of an uncaught exception.
Register the given function to be called at program termination time. The functions registered with at_exit will be called when the program executes Caml.exit, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added with at_exit is called first.
include Int.Replace_polymorphic_compare
compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
include Base_quickcheck.Export
val quickcheck_generator_unit : Base.unit Base_quickcheck.Generator.tval quickcheck_generator_bool : Base.bool Base_quickcheck.Generator.tval quickcheck_generator_char : Base.char Base_quickcheck.Generator.tval quickcheck_generator_string : Base.string Base_quickcheck.Generator.tval quickcheck_generator_int : Base.int Base_quickcheck.Generator.tval quickcheck_generator_int32 : Base.int32 Base_quickcheck.Generator.tval quickcheck_generator_int64 : Base.int64 Base_quickcheck.Generator.tval quickcheck_generator_nativeint : Base.nativeint Base_quickcheck.Generator.tval quickcheck_generator_float : Base.float Base_quickcheck.Generator.tval quickcheck_observer_unit : Base.unit Base_quickcheck.Observer.tval quickcheck_observer_bool : Base.bool Base_quickcheck.Observer.tval quickcheck_observer_char : Base.char Base_quickcheck.Observer.tval quickcheck_observer_string : Base.string Base_quickcheck.Observer.tval quickcheck_observer_int : Base.int Base_quickcheck.Observer.tval quickcheck_observer_int32 : Base.int32 Base_quickcheck.Observer.tval quickcheck_observer_int64 : Base.int64 Base_quickcheck.Observer.tval quickcheck_observer_nativeint : Base.nativeint Base_quickcheck.Observer.tval quickcheck_observer_float : Base.float Base_quickcheck.Observer.tval quickcheck_shrinker_unit : Base.unit Base_quickcheck.Shrinker.tval quickcheck_shrinker_bool : Base.bool Base_quickcheck.Shrinker.tval quickcheck_shrinker_char : Base.char Base_quickcheck.Shrinker.tval quickcheck_shrinker_string : Base.string Base_quickcheck.Shrinker.tval quickcheck_shrinker_int : Base.int Base_quickcheck.Shrinker.tval quickcheck_shrinker_int32 : Base.int32 Base_quickcheck.Shrinker.tval quickcheck_shrinker_int64 : Base.int64 Base_quickcheck.Shrinker.tval quickcheck_shrinker_nativeint : Base.nativeint Base_quickcheck.Shrinker.tval quickcheck_shrinker_float : Base.float Base_quickcheck.Shrinker.tval quickcheck_generator_option : 'a Base_quickcheck.Generator.t -> 'a Base.option Base_quickcheck.Generator.tval quickcheck_generator_list : 'a Base_quickcheck.Generator.t -> 'a Base.list Base_quickcheck.Generator.tval quickcheck_observer_option : 'a Base_quickcheck.Observer.t -> 'a Base.option Base_quickcheck.Observer.tval quickcheck_observer_list : 'a Base_quickcheck.Observer.t -> 'a Base.list Base_quickcheck.Observer.tval quickcheck_shrinker_option : 'a Base_quickcheck.Shrinker.t -> 'a Base.option Base_quickcheck.Shrinker.tval quickcheck_shrinker_list : 'a Base_quickcheck.Shrinker.t -> 'a Base.list Base_quickcheck.Shrinker.tinclude Either.Export
type bigstring = Sexplib.Conv.bigstringval sexp_of_bigstring : bigstring -> Ppx_sexp_conv_lib.Sexp.tval bigstring_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bigstringtype mat = Sexplib.Conv.matval sexp_of_mat : mat -> Ppx_sexp_conv_lib.Sexp.tval mat_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> mattype vec = Sexplib.Conv.vecval sexp_of_vec : vec -> Ppx_sexp_conv_lib.Sexp.tval vec_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> vecval sexp_of_opaque : _ -> Base.Sexp.tval opaque_of_sexp : Base.Sexp.t -> _val sexp_of_pair : ('a -> Base.Sexp.t) -> ('b -> Base.Sexp.t) -> ('a * 'b) -> Base.Sexp.tval pair_of_sexp : (Base.Sexp.t -> 'a) -> (Base.Sexp.t -> 'b) -> Base.Sexp.t -> 'a * 'bexception Of_sexp_error of Base.Exn.t * Base.Sexp.tval of_sexp_error : Base.String.t -> Base.Sexp.t -> _val of_sexp_error_exn : Base.Exn.t -> Base.Sexp.t -> _include Interfaces
module type Applicative = Base.Applicative.Smodule type Binable = Core_kernel__Binable0.Smodule type Comparable = Comparable.Smodule type Comparable_binable = Comparable.S_binablemodule type Floatable = Base.Floatable.Smodule type Hashable = Hashable.Smodule type Hashable_binable = Hashable.S_binablemodule type Identifiable = Identifiable.Smodule type Infix_comparators = Comparable.Infixmodule type Intable = Base.Intable.Smodule type Monad = Base.Monad.Smodule type Quickcheckable = Quickcheckable.Smodule type Robustly_comparable = Robustly_comparable.Smodule type Sexpable = Sexpable.Smodule type Stable = Core_kernel__Stable_module_types.S0module type Stable_int63able = Core_kernel__Stable_int63able.Smodule type Stable_without_comparator = Core_kernel__Stable_module_types.S0_without_comparatormodule type Stable1 = Core_kernel__Stable_module_types.S1module type Stable2 = Core_kernel__Stable_module_types.S2module type Stable3 = Core_kernel__Stable_module_types.S3module type Stable4 = Core_kernel__Stable_module_types.S4module type Stringable = Base.Stringable.Sinclude List.Infix
type never_returns = Nothing.tval sexp_of_never_returns : never_returns -> Ppx_sexp_conv_lib.Sexp.tval never_returns : Nothing.t -> 'ainclude Ordering.Export
include Perms.Export
val bin_shape_read : Bin_prot.Shape.tval bin_size_read : read Bin_prot.Size.sizerval bin_write_read : read Bin_prot.Write.writerval bin_writer_read : read Bin_prot.Type_class.writerval bin_read_read : read Bin_prot.Read.readerval __bin_read_read__ : (Base.Int.t -> read) Bin_prot.Read.readerval bin_reader_read : read Bin_prot.Type_class.readerval bin_read : read Bin_prot.Type_class.tval compare_read : read -> read -> Base.Int.tval hash_fold_read : Base.Hash.state -> read -> Base.Hash.stateval hash_read : read -> Base.Hash.hash_valueval sexp_of_read : read -> Ppx_sexp_conv_lib.Sexp.tval read_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> readWe don't expose bin_io for write due to a naming conflict with the functions exported by bin_io for read_write. If you want bin_io for write, use Write.t.
val compare_write : write -> write -> Base.Int.tval hash_fold_write : Base.Hash.state -> write -> Base.Hash.stateval hash_write : write -> Base.Hash.hash_valueval sexp_of_write : write -> Ppx_sexp_conv_lib.Sexp.tval write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> writeval bin_shape_immutable : Bin_prot.Shape.tval bin_size_immutable : immutable Bin_prot.Size.sizerval bin_write_immutable : immutable Bin_prot.Write.writerval bin_writer_immutable : immutable Bin_prot.Type_class.writerval bin_read_immutable : immutable Bin_prot.Read.readerval __bin_read_immutable__ : (Base.Int.t -> immutable) Bin_prot.Read.readerval bin_reader_immutable : immutable Bin_prot.Type_class.readerval bin_immutable : immutable Bin_prot.Type_class.tval compare_immutable : immutable -> immutable -> Base.Int.tval hash_fold_immutable : Base.Hash.state -> immutable -> Base.Hash.stateval hash_immutable : immutable -> Base.Hash.hash_valueval sexp_of_immutable : immutable -> Ppx_sexp_conv_lib.Sexp.tval immutable_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> immutableval bin_shape_read_write : Bin_prot.Shape.tval bin_size_read_write : read_write Bin_prot.Size.sizerval bin_write_read_write : read_write Bin_prot.Write.writerval bin_writer_read_write : read_write Bin_prot.Type_class.writerval bin_read_read_write : read_write Bin_prot.Read.readerval __bin_read_read_write__ : (Base.Int.t -> read_write) Bin_prot.Read.readerval bin_reader_read_write : read_write Bin_prot.Type_class.readerval bin_read_write : read_write Bin_prot.Type_class.tval compare_read_write : read_write -> read_write -> Base.Int.tval hash_fold_read_write : Base.Hash.state -> read_write -> Base.Hash.stateval hash_read_write : read_write -> Base.Hash.hash_valueval sexp_of_read_write : read_write -> Ppx_sexp_conv_lib.Sexp.tval read_write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read_writeval bin_shape_perms : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_perms : 'a Bin_prot.Size.sizer -> 'a perms Bin_prot.Size.sizerval bin_write_perms : 'a Bin_prot.Write.writer -> 'a perms Bin_prot.Write.writerval bin_writer_perms : 'a Bin_prot.Type_class.writer -> 'a perms Bin_prot.Type_class.writerval bin_read_perms : 'a Bin_prot.Read.reader -> 'a perms Bin_prot.Read.readerval __bin_read_perms__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a perms) Bin_prot.Read.readerval bin_reader_perms : 'a Bin_prot.Type_class.reader -> 'a perms Bin_prot.Type_class.readerval bin_perms : 'a Bin_prot.Type_class.t -> 'a perms Bin_prot.Type_class.tval compare_perms : ('a -> 'a -> Base.Int.t) -> 'a perms -> 'a perms -> Base.Int.tval hash_fold_perms : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a perms -> Base.Hash.stateval sexp_of_perms : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a perms -> Ppx_sexp_conv_lib.Sexp.tval perms_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a permsexception Bug of Base.String.texception C_malloc_exn of Base.Int.t * Base.Int.tRaised if malloc in C bindings fail (errno * size).
exception Finally of Base.Exn.t * Base.Exn.tphys_same is like phys_equal, but with a more general type. phys_same is useful when dealing with existential types, when one has a packed value and an unpacked value that one wants to check are physically equal. One can't use phys_equal in such a situation because the types are different.
val bprintf : Caml.Buffer.t -> ('a, Caml.Buffer.t, unit) Stdlib.format -> 'aval eprintf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'aval error : ?strict:unit -> string -> 'a -> ('a -> Base.Sexp.t) -> 'b Or_error.tval error_s : Base.Sexp.t -> 'a Or_error.tval failwithf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'aval failwithp : ?strict:Base.Unit.t -> Stdlib.Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'bval failwiths : ?strict:Base.Unit.t -> ?here:Stdlib.Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'bval force : 'a Base.Lazy.t -> 'aval fprintf : Stdio.Out_channel.t -> ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'aval invalid_argf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'aval ifprintf : 'a -> ('b, 'a, 'c, unit) Stdlib.format4 -> 'bval ksprintf : (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'bval ok_exn : 'a Or_error.t -> 'aval print_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unitval eprint_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unitval printf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'aval raise_s : Base.Sexp.t -> 'aval sprintf : ('a, unit, string) Stdlib.format -> 'aval stage : 'a -> 'a Base.Staged.tval unstage : 'a Base.Staged.t -> 'aval with_return : ('a Base.With_return.return -> 'a) -> 'aval with_return_option : ('a Base.With_return.return -> unit) -> 'a optioninclude Typerep_lib.Std_internal
module rec Typerep : sig ... endruntime type representations
val typerep_of_int : int Typerep.tval typerep_of_int32 : int32 Typerep.tval typerep_of_int64 : int64 Typerep.tval typerep_of_nativeint : nativeint Typerep.tval typerep_of_int63 : Base.Int63.t Typerep.tval typerep_of_char : char Typerep.tval typerep_of_float : float Typerep.tval typerep_of_string : string Typerep.tval typerep_of_bytes : bytes Typerep.tval typerep_of_bool : bool Typerep.tval typerep_of_unit : unit Typerep.tval value_tuple0 : tuple0val typerep_of_ref : 'a Typerep.t -> 'a Stdlib.ref Typerep.tval typerep_of_tuple4 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> ('a * 'b * 'c * 'd) Typerep.tval typerep_of_tuple5 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> 'e Typerep.t -> ('a * 'b * 'c * 'd * 'e) Typerep.tval typename_of_int : int Typerep_lib.Typename.tval typename_of_int32 : int32 Typerep_lib.Typename.tval typename_of_int64 : int64 Typerep_lib.Typename.tval typename_of_nativeint : nativeint Typerep_lib.Typename.tval typename_of_int63 : Base.Int63.t Typerep_lib.Typename.tval typename_of_char : char Typerep_lib.Typename.tval typename_of_float : float Typerep_lib.Typename.tval typename_of_string : string Typerep_lib.Typename.tval typename_of_bytes : bytes Typerep_lib.Typename.tval typename_of_bool : bool Typerep_lib.Typename.tval typename_of_unit : unit Typerep_lib.Typename.tval typename_of_option : 'a Typerep_lib.Typename.t -> 'a option Typerep_lib.Typename.tval typename_of_list : 'a Typerep_lib.Typename.t -> 'a list Typerep_lib.Typename.tval typename_of_array : 'a Typerep_lib.Typename.t -> 'a array Typerep_lib.Typename.tval typename_of_lazy_t : 'a Typerep_lib.Typename.t -> 'a lazy_t Typerep_lib.Typename.tval typename_of_ref : 'a Typerep_lib.Typename.t -> 'a Stdlib.ref Typerep_lib.Typename.tval typename_of_function : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a -> 'b) Typerep_lib.Typename.tval typename_of_tuple0 : tuple0 Typerep_lib.Typename.tval typename_of_tuple2 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a * 'b) Typerep_lib.Typename.tval typename_of_tuple3 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> ('a * 'b * 'c) Typerep_lib.Typename.tval typename_of_tuple4 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd) Typerep_lib.Typename.tval typename_of_tuple5 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> 'e Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.tinclude sig ... end with type 'a Core_kernel.array := 'a Base.Array.t with type Core_kernel.bool := Base.Bool.t with type Core_kernel.char := Base.Char.t with type Core_kernel.float := Base.Float.t with type Core_kernel.int := Base.Int.t with type Core_kernel.int32 := Base.Int32.t with type Core_kernel.int64 := Base.Int64.t with type 'a Core_kernel.list := 'a Base.List.t with type Core_kernel.nativeint := Base.Nativeint.t with type 'a Core_kernel.option := 'a Base.Option.t with type Core_kernel.string := Base.String.t with type Core_kernel.bytes := Base.Bytes.t with type 'a Core_kernel.lazy_t := 'a lazy_t with type 'a Core_kernel.ref := 'a ref with type Core_kernel.unit := Base.Unit.t
val bin_shape_array : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_array : 'a Bin_prot.Size.sizer -> 'a Base.Array.t Bin_prot.Size.sizerval bin_write_array : 'a Bin_prot.Write.writer -> 'a Base.Array.t Bin_prot.Write.writerval bin_writer_array : 'a Bin_prot.Type_class.writer -> 'a Base.Array.t Bin_prot.Type_class.writerval bin_read_array : 'a Bin_prot.Read.reader -> 'a Base.Array.t Bin_prot.Read.readerval __bin_read_array__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Array.t) Bin_prot.Read.readerval bin_reader_array : 'a Bin_prot.Type_class.reader -> 'a Base.Array.t Bin_prot.Type_class.readerval bin_array : 'a Bin_prot.Type_class.t -> 'a Base.Array.t Bin_prot.Type_class.tval compare_array : ('a -> 'a -> Base.Int.t) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Int.tval equal_array : ('a -> 'a -> Base.Bool.t) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Bool.tval sexp_of_array : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Array.t -> Ppx_sexp_conv_lib.Sexp.tval array_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Array.tval typerep_of_array : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Array.t Typerep_lib.Std.Typerep.tval typename_of_array : 'a Typerep_lib.Std.Typename.t -> 'a Base.Array.t Typerep_lib.Std.Typename.tval bin_shape_bool : Bin_prot.Shape.tval bin_size_bool : Base.Bool.t Bin_prot.Size.sizerval bin_write_bool : Base.Bool.t Bin_prot.Write.writerval bin_writer_bool : Base.Bool.t Bin_prot.Type_class.writerval bin_read_bool : Base.Bool.t Bin_prot.Read.readerval __bin_read_bool__ : (Base.Int.t -> Base.Bool.t) Bin_prot.Read.readerval bin_reader_bool : Base.Bool.t Bin_prot.Type_class.readerval bin_bool : Base.Bool.t Bin_prot.Type_class.tval compare_bool : Base.Bool.t -> Base.Bool.t -> Base.Int.tval equal_bool : Base.Bool.t -> Base.Bool.t -> Base.Bool.tval hash_fold_bool : Base.Hash.state -> Base.Bool.t -> Base.Hash.stateval hash_bool : Base.Bool.t -> Base.Hash.hash_valueval sexp_of_bool : Base.Bool.t -> Ppx_sexp_conv_lib.Sexp.tval bool_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bool.tval typerep_of_bool : Base.Bool.t Typerep_lib.Std.Typerep.tval typename_of_bool : Base.Bool.t Typerep_lib.Std.Typename.tval bin_shape_char : Bin_prot.Shape.tval bin_size_char : Base.Char.t Bin_prot.Size.sizerval bin_write_char : Base.Char.t Bin_prot.Write.writerval bin_writer_char : Base.Char.t Bin_prot.Type_class.writerval bin_read_char : Base.Char.t Bin_prot.Read.readerval __bin_read_char__ : (Base.Int.t -> Base.Char.t) Bin_prot.Read.readerval bin_reader_char : Base.Char.t Bin_prot.Type_class.readerval bin_char : Base.Char.t Bin_prot.Type_class.tval compare_char : Base.Char.t -> Base.Char.t -> Base.Int.tval equal_char : Base.Char.t -> Base.Char.t -> Base.Bool.tval hash_fold_char : Base.Hash.state -> Base.Char.t -> Base.Hash.stateval hash_char : Base.Char.t -> Base.Hash.hash_valueval sexp_of_char : Base.Char.t -> Ppx_sexp_conv_lib.Sexp.tval char_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Char.tval typerep_of_char : Base.Char.t Typerep_lib.Std.Typerep.tval typename_of_char : Base.Char.t Typerep_lib.Std.Typename.tval bin_shape_float : Bin_prot.Shape.tval bin_size_float : Base.Float.t Bin_prot.Size.sizerval bin_write_float : Base.Float.t Bin_prot.Write.writerval bin_writer_float : Base.Float.t Bin_prot.Type_class.writerval bin_read_float : Base.Float.t Bin_prot.Read.readerval __bin_read_float__ : (Base.Int.t -> Base.Float.t) Bin_prot.Read.readerval bin_reader_float : Base.Float.t Bin_prot.Type_class.readerval bin_float : Base.Float.t Bin_prot.Type_class.tval compare_float : Base.Float.t -> Base.Float.t -> Base.Int.tval equal_float : Base.Float.t -> Base.Float.t -> Base.Bool.tval hash_fold_float : Base.Hash.state -> Base.Float.t -> Base.Hash.stateval hash_float : Base.Float.t -> Base.Hash.hash_valueval sexp_of_float : Base.Float.t -> Ppx_sexp_conv_lib.Sexp.tval float_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Float.tval typerep_of_float : Base.Float.t Typerep_lib.Std.Typerep.tval typename_of_float : Base.Float.t Typerep_lib.Std.Typename.tval bin_shape_int : Bin_prot.Shape.tval bin_size_int : Base.Int.t Bin_prot.Size.sizerval bin_write_int : Base.Int.t Bin_prot.Write.writerval bin_writer_int : Base.Int.t Bin_prot.Type_class.writerval bin_read_int : Base.Int.t Bin_prot.Read.readerval __bin_read_int__ : (Base.Int.t -> Base.Int.t) Bin_prot.Read.readerval bin_reader_int : Base.Int.t Bin_prot.Type_class.readerval bin_int : Base.Int.t Bin_prot.Type_class.tval compare_int : Base.Int.t -> Base.Int.t -> Base.Int.tval equal_int : Base.Int.t -> Base.Int.t -> Base.Bool.tval hash_fold_int : Base.Hash.state -> Base.Int.t -> Base.Hash.stateval hash_int : Base.Int.t -> Base.Hash.hash_valueval sexp_of_int : Base.Int.t -> Ppx_sexp_conv_lib.Sexp.tval int_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int.tval typerep_of_int : Base.Int.t Typerep_lib.Std.Typerep.tval typename_of_int : Base.Int.t Typerep_lib.Std.Typename.tval bin_shape_int32 : Bin_prot.Shape.tval bin_size_int32 : Base.Int32.t Bin_prot.Size.sizerval bin_write_int32 : Base.Int32.t Bin_prot.Write.writerval bin_writer_int32 : Base.Int32.t Bin_prot.Type_class.writerval bin_read_int32 : Base.Int32.t Bin_prot.Read.readerval __bin_read_int32__ : (Base.Int.t -> Base.Int32.t) Bin_prot.Read.readerval bin_reader_int32 : Base.Int32.t Bin_prot.Type_class.readerval bin_int32 : Base.Int32.t Bin_prot.Type_class.tval compare_int32 : Base.Int32.t -> Base.Int32.t -> Base.Int.tval equal_int32 : Base.Int32.t -> Base.Int32.t -> Base.Bool.tval hash_fold_int32 : Base.Hash.state -> Base.Int32.t -> Base.Hash.stateval hash_int32 : Base.Int32.t -> Base.Hash.hash_valueval sexp_of_int32 : Base.Int32.t -> Ppx_sexp_conv_lib.Sexp.tval int32_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int32.tval typerep_of_int32 : Base.Int32.t Typerep_lib.Std.Typerep.tval typename_of_int32 : Base.Int32.t Typerep_lib.Std.Typename.tval bin_shape_int64 : Bin_prot.Shape.tval bin_size_int64 : Base.Int64.t Bin_prot.Size.sizerval bin_write_int64 : Base.Int64.t Bin_prot.Write.writerval bin_writer_int64 : Base.Int64.t Bin_prot.Type_class.writerval bin_read_int64 : Base.Int64.t Bin_prot.Read.readerval __bin_read_int64__ : (Base.Int.t -> Base.Int64.t) Bin_prot.Read.readerval bin_reader_int64 : Base.Int64.t Bin_prot.Type_class.readerval bin_int64 : Base.Int64.t Bin_prot.Type_class.tval compare_int64 : Base.Int64.t -> Base.Int64.t -> Base.Int.tval equal_int64 : Base.Int64.t -> Base.Int64.t -> Base.Bool.tval hash_fold_int64 : Base.Hash.state -> Base.Int64.t -> Base.Hash.stateval hash_int64 : Base.Int64.t -> Base.Hash.hash_valueval sexp_of_int64 : Base.Int64.t -> Ppx_sexp_conv_lib.Sexp.tval int64_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int64.tval typerep_of_int64 : Base.Int64.t Typerep_lib.Std.Typerep.tval typename_of_int64 : Base.Int64.t Typerep_lib.Std.Typename.tval bin_shape_lazy_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_lazy_t : 'a Bin_prot.Size.sizer -> 'a lazy_t Bin_prot.Size.sizerval bin_write_lazy_t : 'a Bin_prot.Write.writer -> 'a lazy_t Bin_prot.Write.writerval bin_writer_lazy_t : 'a Bin_prot.Type_class.writer -> 'a lazy_t Bin_prot.Type_class.writerval bin_read_lazy_t : 'a Bin_prot.Read.reader -> 'a lazy_t Bin_prot.Read.readerval __bin_read_lazy_t__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a lazy_t) Bin_prot.Read.readerval bin_reader_lazy_t : 'a Bin_prot.Type_class.reader -> 'a lazy_t Bin_prot.Type_class.readerval bin_lazy_t : 'a Bin_prot.Type_class.t -> 'a lazy_t Bin_prot.Type_class.tval compare_lazy_t : ('a -> 'a -> Base.Int.t) -> 'a lazy_t -> 'a lazy_t -> Base.Int.tval hash_fold_lazy_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a lazy_t -> Base.Hash.stateval sexp_of_lazy_t : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a lazy_t -> Ppx_sexp_conv_lib.Sexp.tval lazy_t_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a lazy_tval typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t -> 'a lazy_t Typerep_lib.Std.Typerep.tval typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t -> 'a lazy_t Typerep_lib.Std.Typename.tval bin_shape_list : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_list : 'a Bin_prot.Size.sizer -> 'a Base.List.t Bin_prot.Size.sizerval bin_write_list : 'a Bin_prot.Write.writer -> 'a Base.List.t Bin_prot.Write.writerval bin_writer_list : 'a Bin_prot.Type_class.writer -> 'a Base.List.t Bin_prot.Type_class.writerval bin_read_list : 'a Bin_prot.Read.reader -> 'a Base.List.t Bin_prot.Read.readerval __bin_read_list__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.List.t) Bin_prot.Read.readerval bin_reader_list : 'a Bin_prot.Type_class.reader -> 'a Base.List.t Bin_prot.Type_class.readerval bin_list : 'a Bin_prot.Type_class.t -> 'a Base.List.t Bin_prot.Type_class.tval compare_list : ('a -> 'a -> Base.Int.t) -> 'a Base.List.t -> 'a Base.List.t -> Base.Int.tval equal_list : ('a -> 'a -> Base.Bool.t) -> 'a Base.List.t -> 'a Base.List.t -> Base.Bool.tval hash_fold_list : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a Base.List.t -> Base.Hash.stateval sexp_of_list : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.List.t -> Ppx_sexp_conv_lib.Sexp.tval list_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.List.tval typerep_of_list : 'a Typerep_lib.Std.Typerep.t -> 'a Base.List.t Typerep_lib.Std.Typerep.tval typename_of_list : 'a Typerep_lib.Std.Typename.t -> 'a Base.List.t Typerep_lib.Std.Typename.tval bin_shape_nativeint : Bin_prot.Shape.tval bin_size_nativeint : Base.Nativeint.t Bin_prot.Size.sizerval bin_write_nativeint : Base.Nativeint.t Bin_prot.Write.writerval bin_writer_nativeint : Base.Nativeint.t Bin_prot.Type_class.writerval bin_read_nativeint : Base.Nativeint.t Bin_prot.Read.readerval __bin_read_nativeint__ : (Base.Int.t -> Base.Nativeint.t) Bin_prot.Read.readerval bin_reader_nativeint : Base.Nativeint.t Bin_prot.Type_class.readerval bin_nativeint : Base.Nativeint.t Bin_prot.Type_class.tval compare_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Int.tval equal_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Bool.tval hash_fold_nativeint : Base.Hash.state -> Base.Nativeint.t -> Base.Hash.stateval hash_nativeint : Base.Nativeint.t -> Base.Hash.hash_valueval sexp_of_nativeint : Base.Nativeint.t -> Ppx_sexp_conv_lib.Sexp.tval nativeint_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Nativeint.tval typerep_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typerep.tval typename_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typename.tval bin_shape_option : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_option : 'a Bin_prot.Size.sizer -> 'a Base.Option.t Bin_prot.Size.sizerval bin_write_option : 'a Bin_prot.Write.writer -> 'a Base.Option.t Bin_prot.Write.writerval bin_writer_option : 'a Bin_prot.Type_class.writer -> 'a Base.Option.t Bin_prot.Type_class.writerval bin_read_option : 'a Bin_prot.Read.reader -> 'a Base.Option.t Bin_prot.Read.readerval __bin_read_option__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Option.t) Bin_prot.Read.readerval bin_reader_option : 'a Bin_prot.Type_class.reader -> 'a Base.Option.t Bin_prot.Type_class.readerval bin_option : 'a Bin_prot.Type_class.t -> 'a Base.Option.t Bin_prot.Type_class.tval compare_option : ('a -> 'a -> Base.Int.t) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Int.tval equal_option : ('a -> 'a -> Base.Bool.t) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Bool.tval hash_fold_option : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a Base.Option.t -> Base.Hash.stateval sexp_of_option : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Option.t -> Ppx_sexp_conv_lib.Sexp.tval option_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Option.tval typerep_of_option : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Option.t Typerep_lib.Std.Typerep.tval typename_of_option : 'a Typerep_lib.Std.Typename.t -> 'a Base.Option.t Typerep_lib.Std.Typename.tval bin_shape_string : Bin_prot.Shape.tval bin_size_string : Base.String.t Bin_prot.Size.sizerval bin_write_string : Base.String.t Bin_prot.Write.writerval bin_writer_string : Base.String.t Bin_prot.Type_class.writerval bin_read_string : Base.String.t Bin_prot.Read.readerval __bin_read_string__ : (Base.Int.t -> Base.String.t) Bin_prot.Read.readerval bin_reader_string : Base.String.t Bin_prot.Type_class.readerval bin_string : Base.String.t Bin_prot.Type_class.tval compare_string : Base.String.t -> Base.String.t -> Base.Int.tval equal_string : Base.String.t -> Base.String.t -> Base.Bool.tval hash_fold_string : Base.Hash.state -> Base.String.t -> Base.Hash.stateval hash_string : Base.String.t -> Base.Hash.hash_valueval sexp_of_string : Base.String.t -> Ppx_sexp_conv_lib.Sexp.tval string_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.String.tval typerep_of_string : Base.String.t Typerep_lib.Std.Typerep.tval typename_of_string : Base.String.t Typerep_lib.Std.Typename.tval bin_shape_bytes : Bin_prot.Shape.tval bin_size_bytes : Base.Bytes.t Bin_prot.Size.sizerval bin_write_bytes : Base.Bytes.t Bin_prot.Write.writerval bin_writer_bytes : Base.Bytes.t Bin_prot.Type_class.writerval bin_read_bytes : Base.Bytes.t Bin_prot.Read.readerval __bin_read_bytes__ : (Base.Int.t -> Base.Bytes.t) Bin_prot.Read.readerval bin_reader_bytes : Base.Bytes.t Bin_prot.Type_class.readerval bin_bytes : Base.Bytes.t Bin_prot.Type_class.tval compare_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Int.tval equal_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Bool.tval sexp_of_bytes : Base.Bytes.t -> Ppx_sexp_conv_lib.Sexp.tval bytes_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bytes.tval typerep_of_bytes : Base.Bytes.t Typerep_lib.Std.Typerep.tval typename_of_bytes : Base.Bytes.t Typerep_lib.Std.Typename.tval bin_shape_ref : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_ref : 'a Bin_prot.Size.sizer -> 'a ref Bin_prot.Size.sizerval bin_write_ref : 'a Bin_prot.Write.writer -> 'a ref Bin_prot.Write.writerval bin_writer_ref : 'a Bin_prot.Type_class.writer -> 'a ref Bin_prot.Type_class.writerval bin_read_ref : 'a Bin_prot.Read.reader -> 'a ref Bin_prot.Read.readerval __bin_read_ref__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a ref) Bin_prot.Read.readerval bin_reader_ref : 'a Bin_prot.Type_class.reader -> 'a ref Bin_prot.Type_class.readerval bin_ref : 'a Bin_prot.Type_class.t -> 'a ref Bin_prot.Type_class.tval compare_ref : ('a -> 'a -> Base.Int.t) -> 'a ref -> 'a ref -> Base.Int.tval equal_ref : ('a -> 'a -> Base.Bool.t) -> 'a ref -> 'a ref -> Base.Bool.tval sexp_of_ref : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a ref -> Ppx_sexp_conv_lib.Sexp.tval ref_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a refval typerep_of_ref : 'a Typerep_lib.Std.Typerep.t -> 'a ref Typerep_lib.Std.Typerep.tval typename_of_ref : 'a Typerep_lib.Std.Typename.t -> 'a ref Typerep_lib.Std.Typename.tval bin_shape_unit : Bin_prot.Shape.tval bin_size_unit : Base.Unit.t Bin_prot.Size.sizerval bin_write_unit : Base.Unit.t Bin_prot.Write.writerval bin_writer_unit : Base.Unit.t Bin_prot.Type_class.writerval bin_read_unit : Base.Unit.t Bin_prot.Read.readerval __bin_read_unit__ : (Base.Int.t -> Base.Unit.t) Bin_prot.Read.readerval bin_reader_unit : Base.Unit.t Bin_prot.Type_class.readerval bin_unit : Base.Unit.t Bin_prot.Type_class.tval compare_unit : Base.Unit.t -> Base.Unit.t -> Base.Int.tval equal_unit : Base.Unit.t -> Base.Unit.t -> Base.Bool.tval hash_fold_unit : Base.Hash.state -> Base.Unit.t -> Base.Hash.stateval hash_unit : Base.Unit.t -> Base.Hash.hash_valueval sexp_of_unit : Base.Unit.t -> Ppx_sexp_conv_lib.Sexp.tval unit_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Unit.tval typerep_of_unit : Base.Unit.t Typerep_lib.Std.Typerep.tval typename_of_unit : Base.Unit.t Typerep_lib.Std.Typename.ttype float_array = 'a Base.Array.tval bin_shape_float_array : Bin_prot.Shape.tval bin_size_float_array : float_array Bin_prot.Size.sizerval bin_write_float_array : float_array Bin_prot.Write.writerval bin_writer_float_array : float_array Bin_prot.Type_class.writerval bin_read_float_array : float_array Bin_prot.Read.readerval __bin_read_float_array__ : (Base.Int.t -> float_array) Bin_prot.Read.readerval bin_reader_float_array : float_array Bin_prot.Type_class.readerval bin_float_array : float_array Bin_prot.Type_class.tval compare_float_array : float_array -> float_array -> Base.Int.tval sexp_of_float_array : float_array -> Ppx_sexp_conv_lib.Sexp.tval float_array_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> float_arrayval typerep_of_float_array : float_array Typerep_lib.Std.Typerep.tval typename_of_float_array : float_array Typerep_lib.Std.Typename.tval sexp_of_exn : Base.Exn.t -> Base.Sexp.tinclude sig ... end
type 'a sexp_array = 'a Base.Array.tval bin_shape_sexp_array : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_sexp_array : a. 'a Bin_prot.Size.sizer -> 'a sexp_array Bin_prot.Size.sizerval bin_write_sexp_array : a. 'a Bin_prot.Write.writer -> 'a sexp_array Bin_prot.Write.writerval bin_writer_sexp_array : 'a Bin_prot.Type_class.writer -> 'a sexp_array Bin_prot.Type_class.writerval __bin_read_sexp_array__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_array) Bin_prot.Read.readerval bin_read_sexp_array : a. 'a Bin_prot.Read.reader -> 'a sexp_array Bin_prot.Read.readerval bin_reader_sexp_array : 'a Bin_prot.Type_class.reader -> 'a sexp_array Bin_prot.Type_class.readerval bin_sexp_array : 'a Bin_prot.Type_class.t -> 'a sexp_array Bin_prot.Type_class.tval compare_sexp_array : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_array -> 'a sexp_array -> Base.Int.tmodule Typename_of_sexp_array : sig ... endval typename_of_sexp_array : 'a Typerep_lib.Typename.t -> 'a sexp_array Typerep_lib.Typename.tval typerep_of_sexp_array : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_array Typerep_lib.Std.Typerep.ttype sexp_bool = Base.Bool.tval bin_shape_sexp_bool : Bin_prot.Shape.tval bin_size_sexp_bool : sexp_bool Bin_prot.Size.sizerval bin_write_sexp_bool : sexp_bool Bin_prot.Write.writerval bin_writer_sexp_bool : sexp_bool Bin_prot.Type_class.writerval __bin_read_sexp_bool__ : (Base.Int.t -> sexp_bool) Bin_prot.Read.readerval bin_read_sexp_bool : sexp_bool Bin_prot.Read.readerval bin_reader_sexp_bool : sexp_bool Bin_prot.Type_class.readerval bin_sexp_bool : sexp_bool Bin_prot.Type_class.tval compare_sexp_bool : sexp_bool -> sexp_bool -> Base.Int.tval hash_fold_sexp_bool : Base.Hash.state -> sexp_bool -> Base.Hash.stateval hash_sexp_bool : sexp_bool -> Base.Hash.hash_valuemodule Typename_of_sexp_bool : sig ... endval typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.tval typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.ttype 'a sexp_list = 'a Base.List.tval bin_shape_sexp_list : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_sexp_list : a. 'a Bin_prot.Size.sizer -> 'a sexp_list Bin_prot.Size.sizerval bin_write_sexp_list : a. 'a Bin_prot.Write.writer -> 'a sexp_list Bin_prot.Write.writerval bin_writer_sexp_list : 'a Bin_prot.Type_class.writer -> 'a sexp_list Bin_prot.Type_class.writerval __bin_read_sexp_list__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_list) Bin_prot.Read.readerval bin_read_sexp_list : a. 'a Bin_prot.Read.reader -> 'a sexp_list Bin_prot.Read.readerval bin_reader_sexp_list : 'a Bin_prot.Type_class.reader -> 'a sexp_list Bin_prot.Type_class.readerval bin_sexp_list : 'a Bin_prot.Type_class.t -> 'a sexp_list Bin_prot.Type_class.tval compare_sexp_list : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_list -> 'a sexp_list -> Base.Int.tval hash_fold_sexp_list : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_list -> Base.Hash.statemodule Typename_of_sexp_list : sig ... endval typename_of_sexp_list : 'a Typerep_lib.Typename.t -> 'a sexp_list Typerep_lib.Typename.tval typerep_of_sexp_list : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_list Typerep_lib.Std.Typerep.ttype 'a sexp_option = 'a Base.Option.tval bin_shape_sexp_option : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_sexp_option : a. 'a Bin_prot.Size.sizer -> 'a sexp_option Bin_prot.Size.sizerval bin_write_sexp_option : a. 'a Bin_prot.Write.writer -> 'a sexp_option Bin_prot.Write.writerval bin_writer_sexp_option : 'a Bin_prot.Type_class.writer -> 'a sexp_option Bin_prot.Type_class.writerval __bin_read_sexp_option__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_option) Bin_prot.Read.readerval bin_read_sexp_option : a. 'a Bin_prot.Read.reader -> 'a sexp_option Bin_prot.Read.readerval bin_reader_sexp_option : 'a Bin_prot.Type_class.reader -> 'a sexp_option Bin_prot.Type_class.readerval bin_sexp_option : 'a Bin_prot.Type_class.t -> 'a sexp_option Bin_prot.Type_class.tval compare_sexp_option : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_option -> 'a sexp_option -> Base.Int.tval hash_fold_sexp_option : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_option -> Base.Hash.statemodule Typename_of_sexp_option : sig ... endval typename_of_sexp_option : 'a Typerep_lib.Typename.t -> 'a sexp_option Typerep_lib.Typename.tval typerep_of_sexp_option : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_option Typerep_lib.Std.Typerep.tval bin_shape_sexp_opaque : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_sexp_opaque : a. 'a Bin_prot.Size.sizer -> 'a sexp_opaque Bin_prot.Size.sizerval bin_write_sexp_opaque : a. 'a Bin_prot.Write.writer -> 'a sexp_opaque Bin_prot.Write.writerval bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer -> 'a sexp_opaque Bin_prot.Type_class.writerval __bin_read_sexp_opaque__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_opaque) Bin_prot.Read.readerval bin_read_sexp_opaque : a. 'a Bin_prot.Read.reader -> 'a sexp_opaque Bin_prot.Read.readerval bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader -> 'a sexp_opaque Bin_prot.Type_class.readerval bin_sexp_opaque : 'a Bin_prot.Type_class.t -> 'a sexp_opaque Bin_prot.Type_class.tval compare_sexp_opaque : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_opaque -> 'a sexp_opaque -> Base.Int.tval hash_fold_sexp_opaque : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_opaque -> Base.Hash.statemodule Typename_of_sexp_opaque : sig ... endval typename_of_sexp_opaque : 'a Typerep_lib.Typename.t -> 'a sexp_opaque Typerep_lib.Typename.tval typerep_of_sexp_opaque : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_opaque Typerep_lib.Std.Typerep.texception Not_found_s of Sexplib0.Sexp.tModules imported from Base without modification
module Caml = CamlModules that extend Base
module Container_intf : sig ... endThis module extends Base.Container.
Modules added by Core_kernel
module Bigstring : sig ... endString type based on Bigarray, for use in I/O and C-bindings.
module Command : sig ... endmodule Core_kernel_stable : sig ... endmodule Date : sig ... endDate module.
module Filename : sig ... endmodule Map_intf : sig ... endThis module defines interfaces used in Map. See those docs for a description of the design.
module Digest = Md5module Optional_syntax_intf : sig ... endmodule Set_intf : sig ... endmodule Sys = Stdlib.Sysmodule Time : sig ... endmodule Time_ns : sig ... endTime module.
module Core_kernel_private : sig ... endTo be used in implementing Core, but not by end users.