Usage
Blang sexp syntax
type 'a t = private | True |
| False |
| And of 'a t * 'a t |
| Or of 'a t * 'a t |
| Not of 'a t |
| If of 'a t * 'a t * 'a t |
| Base of 'a |
Note that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for 'a must not look anything like blang sexps. Otherwise t_of_sexp will fail.
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writerval bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.readerval bin_t : ('a, 'a t) Bin_prot.Type_class.S1.tval compare : ('a -> 'a -> Base.Int.t) -> 'a t -> 'a t -> Base.Int.tval hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.stateinclude Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a tval sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.tSmart constructors that simplify away constants whenever possible
module type Constructors = sig ... endinclude Constructors
val base : 'a -> 'a tval true_ : _ tval false_ : _ tval constant : Base.Bool.t -> _ tfunction true -> true_ | false -> false_
val and_ : 'a t Base.List.t -> 'a tn-ary And
val or_ : 'a t Base.List.t -> 'a tn-ary Or
module O : sig ... endval constant_value : 'a t -> Base.Bool.t Base.Option.tconstant_value t = Some b iff t = constant b
val gather_conjuncts : 'a t -> 'a t Base.List.tgather_conjuncts t gathers up all toplevel conjuncts in t. For example,
gather_conjuncts (and_ ts) = tsgather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2gather_conjuncts True = []gather_conjuncts t = [t]whentmatches neitherAnd (_, _)norTrue
val gather_disjuncts : 'a t -> 'a t Base.List.tgather_disjuncts t gathers up all toplevel disjuncts in t. For example,
gather_disjuncts (or_ ts) = tsgather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2gather_disjuncts False = []gather_disjuncts t = [t]whentmatches neitherOr (_, _)norFalse
include Container.S1 with type 'a t := 'a t
val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> boolChecks whether the provided element is there, using equal.
val length : 'a t -> intval is_empty : 'a t -> boolval iter : 'a t -> f:('a -> unit) -> unitval fold : 'a t -> init:'accum -> f:('accum -> 'a -> 'accum) -> 'accumfold t ~init ~f returns f (... f (f (f init e1) e2) e3 ...) en, where e1..en are the elements of t
val fold_result : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.tfold_result t ~init ~f is a short-circuiting version of fold that runs in the Result monad. If f returns an Error _, that value is returned without any additional invocations of f.
val fold_until : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'final) Base__Container_intf.Export.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'finalfold_until t ~init ~f ~finish is a short-circuiting version of fold. If f returns Stop _ the computation ceases and results in that value. If f returns Continue _, the fold will proceed. If f never returns Stop _, the final result is computed by finish.
Example:
type maybe_negative =
| Found_negative of int
| All_nonnegative of { sum : int }
(** [first_neg_or_sum list] returns the first negative number in [list], if any,
otherwise returns the sum of the list. *)
let first_neg_or_sum =
List.fold_until ~init:0
~f:(fun sum x ->
if x < 0
then Stop (Found_negative x)
else Continue (sum + x))
~finish:(fun sum -> All_nonnegative { sum })
;;
let x = first_neg_or_sum [1; 2; 3; 4; 5]
val x : maybe_negative = All_nonnegative {sum = 15}
let y = first_neg_or_sum [1; 2; -3; 4; 5]
val y : maybe_negative = Found_negative -3val exists : 'a t -> f:('a -> bool) -> boolReturns true if and only if there exists an element for which the provided function evaluates to true. This is a short-circuiting operation.
val for_all : 'a t -> f:('a -> bool) -> boolReturns true if and only if the provided function evaluates to true for all elements. This is a short-circuiting operation.
val count : 'a t -> f:('a -> bool) -> intReturns the number of elements for which the provided function evaluates to true.
val sum : (module Base__Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sumReturns the sum of f i for all i in the container.
val find : 'a t -> f:('a -> bool) -> 'a optionReturns as an option the first element for which f evaluates to true.
val find_map : 'a t -> f:('a -> 'b option) -> 'b optionReturns the first evaluation of f that returns Some, and returns None if there is no such element.
val to_list : 'a t -> 'a listval to_array : 'a t -> 'a arrayval min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a optionReturns a minimum (resp maximum) element from the collection using the provided compare function, or None if the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses fold so it has the same complexity as fold.
val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a optioninclude Quickcheckable.S1 with type 'a t := 'a t
val quickcheck_generator : 'a Base_quickcheck.Generator.t -> 'a t Base_quickcheck.Generator.tval quickcheck_observer : 'a Base_quickcheck.Observer.t -> 'a t Base_quickcheck.Observer.tval quickcheck_shrinker : 'a Base_quickcheck.Shrinker.t -> 'a t Base_quickcheck.Shrinker.tBlang.t sports a substitution monad:
t >>= f returns a computation that sequences the computations represented by two monad elements. The resulting computation first does t to yield a value v, and then runs the computation returned by f v.
module Monad_infix : sig ... endval return : 'a -> 'a treturn v returns the (trivial) computation that returns v.
ignore_m t is map t ~f:(fun _ -> ()). ignore_m used to be called ignore, but we decided that was a bad name, because it shadowed the widely used Caml.ignore. Some monads still do let ignore = ignore_m for historical reasons.
module Let_syntax : sig ... endval values : 'a t -> 'a Base.List.tvalues t forms the list containing every v for which Base v is a subexpression of t
val eval : 'a t -> ('a -> Base.Bool.t) -> Base.Bool.teval t f evaluates the proposition t relative to an environment f that assigns truth values to base propositions.
val eval_set : universe:('elt, 'comparator) Set.t Lazy.t -> ('a -> ('elt, 'comparator) Set.t) -> 'a t -> ('elt, 'comparator) Set.teval_set ~universe set_of_base expression returns the subset of elements e in universe that satisfy eval expression (fun base -> Set.mem (set_of_base base) e).
eval_set assumes, but does not verify, that set_of_base always returns a subset of universe. If this doesn't hold, then eval_set's result may contain elements not in universe.
And set1 set2 represents the elements that are both in set1 and set2, thus in the intersection of the two sets. Symmetrically, Or set1 set2 represents the union of set1 and set2.
val specialize : 'a t -> ('a -> [ `Known of Base.Bool.t | `Unknown ]) -> 'a tspecialize t f partially evaluates t according to a perhaps-incomplete assignment f of the values of base propositions. The following laws (at least partially) characterize its behavior.
specialize t (fun _ -> `Unknown) = t
specialize t (fun x -> `Known (f x)) = constant (eval t f)
List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
if List.for_all (values t) ~f:(fun x -> match g x with | `Known b -> b = f x | `Unknown -> true) then eval t f = eval (specialize t g) f
val invariant : 'a t -> Base.Unit.tmodule Stable : sig ... end