type ('key, +'value, 'cmp) t = ('key, 'value, 'cmp) Base.Map.t
type ('k, 'cmp) comparator = (module Comparator.S with type comparator_witness = 'cmp and type t = 'k)
val invariants : (_, _, _) t -> Base.Bool.t
Test if invariants of internal AVL search tree hold.
val comparator : ('a, _, 'cmp) t -> ('a, 'cmp) Comparator.t
val comparator_s : ('a, _, 'cmp) t -> ('a, 'cmp) comparator
val empty : ('a, 'cmp) comparator -> ('a, 'b, 'cmp) t
The empty map.
val singleton : ('a, 'cmp) comparator -> 'a -> 'b -> ('a, 'b, 'cmp) t
Map with one (key, data) pair.
val of_alist : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
Creates map from an association list with unique keys.
val of_alist_or_error : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> ('a, 'b, 'cmp) t Or_error.t
Creates map from an association list with unique keys. Returns an error if duplicate 'a
keys are found.
val of_alist_exn : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> ('a, 'b, 'cmp) t
Creates map from an association list with unique keys. Raises an exception if duplicate 'a
keys are found.
val of_hashtbl_exn : ('a, 'cmp) comparator -> ('a, 'b) Hashtbl.t -> ('a, 'b, 'cmp) t
of_hashtbl_exn
creates a map from bindings present in a hash table. of_hashtbl_exn
raises if there are distinct keys a1
and a2
in the table with comparator.compare a1 a2 = 0
, which is only possible if the hash-table comparison function is different than comparator.compare
. In the common case, the comparison is the same, in which case of_hashtbl_exn
does not raise, regardless of the keys present in the table.
val of_alist_multi : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> ('a, 'b Base.List.t, 'cmp) t
Creates map from an association list with possibly repeated keys.
val of_alist_fold : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> init:'c -> f:('c -> 'b -> 'c) -> ('a, 'c, 'cmp) t
Combines an association list into a map, folding together bound values with common keys.
val of_alist_reduce : ('a, 'cmp) comparator -> ('a * 'b) Base.List.t -> f:('b -> 'b -> 'b) -> ('a, 'b, 'cmp) t
Combines an association list into a map, reducing together bound values with common keys.
val of_iteri : ('a, 'cmp) comparator -> iteri:(f:(key:'a -> data:'b -> Base.Unit.t) -> Base.Unit.t) -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
of_iteri ~iteri
behaves like of_alist
, except that instead of taking a concrete datastruture, it takes an iteration function. For instance, to convert a string table into a map: of_iteri (module String) ~f:(Hashtbl.iteri table)
. It is faster than adding the elements one by one.
Trees
module Tree : sig ... end
val of_tree : ('k, 'cmp) comparator -> ('k, 'v, 'cmp) Tree.t -> ('k, 'v, 'cmp) t
Creates a t
from a Tree.t
and a Comparator.t
. This is an O(n) operation as it must discover the length of the Tree.t
.
More interface
val of_sorted_array : ('a, 'cmp) comparator -> ('a * 'b) Base.Array.t -> ('a, 'b, 'cmp) t Or_error.t
Creates map from a sorted array of key-data pairs. The input array must be sorted, as given by the relevant comparator (either in ascending or descending order), and must not contain any duplicate keys. If either of these conditions does not hold, an error is returned.
val of_sorted_array_unchecked : ('a, 'cmp) comparator -> ('a * 'b) Base.Array.t -> ('a, 'b, 'cmp) t
Like of_sorted_array
except it returns a map with broken invariants when an Error
would have been returned.
val of_increasing_iterator_unchecked : ('a, 'cmp) comparator -> len:Base.Int.t -> f:(Base.Int.t -> 'a * 'b) -> ('a, 'b, 'cmp) t
of_increasing_iterator_unchecked c ~len ~f
behaves like of_sorted_array_unchecked c (Array.init len ~f)
, with the additional restriction that a decreasing order is not supported. The advantage is not requiring you to allocate an intermediate array. f
will be called with 0, 1, ... len - 1
, in order.
val of_increasing_sequence : ('k, 'cmp) comparator -> ('k * 'v) Sequence.t -> ('k, 'v, 'cmp) t Or_error.t
of_increasing_sequence c seq
behaves like of_sorted_array c
(Sequence.to_array seq)
, but does not allocate the intermediate array.
The sequence will be folded over once, and the additional time complexity is O(n).
val of_sequence : ('k, 'cmp) comparator -> ('k * 'v) Sequence.t -> [ `Ok of ('k, 'v, 'cmp) t | `Duplicate_key of 'k ]
Creates a map from an association sequence with unique keys.
of_sequence c seq
behaves like of_alist c (Sequence.to_list seq)
but does not allocate the intermediate list.
If your sequence is increasing, use of_increasing_sequence
for better performance.
val of_sequence_or_error : ('a, 'cmp) comparator -> ('a * 'b) Sequence.t -> ('a, 'b, 'cmp) t Or_error.t
Creates a map from an association sequence with unique keys, returning an error if duplicate 'a
keys are found.
of_sequence_or_error c seq
behaves like of_alist_or_error c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_exn : ('a, 'cmp) comparator -> ('a * 'b) Sequence.t -> ('a, 'b, 'cmp) t
Creates a map from an association sequence with unique keys, raising an exception if duplicate 'a
keys are found.
of_sequence_exn c seq
behaves like of_alist_exn c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_multi : ('a, 'cmp) comparator -> ('a * 'b) Sequence.t -> ('a, 'b Base.List.t, 'cmp) t
Creates a map from an association sequence with possibly repeated keys. The values in the map for a given key appear in the same order as they did in the association list.
of_sequence_multi c seq
behaves like of_alist_multi c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_fold : ('a, 'cmp) comparator -> ('a * 'b) Sequence.t -> init:'c -> f:('c -> 'b -> 'c) -> ('a, 'c, 'cmp) t
Combines an association sequence into a map, folding together bound values with common keys.
of_sequence_fold c seq ~init ~f
behaves like of_alist_fold c (Sequence.to_list seq) ~init ~f
but does not allocate the intermediate list.
val of_sequence_reduce : ('a, 'cmp) comparator -> ('a * 'b) Sequence.t -> f:('b -> 'b -> 'b) -> ('a, 'b, 'cmp) t
Combines an association sequence into a map, reducing together bound values with common keys.
of_sequence_reduce c seq ~f
behaves like of_alist_reduce c (Sequence.to_list seq) ~f
but does not allocate the intermediate list.
val is_empty : (_, _, _) t -> Base.Bool.t
Tests whether a map is empty or not.
val length : (_, _, _) t -> Base.Int.t
length map
returns number of elements in map
. O(1), but Tree.length
is O(n).
val add : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t Map_intf.Or_duplicate.t
add_exn t ~key ~data
returns t
extended with key
mapped to data
, raising if mem key t
.
Returns a new map with the specified new binding; if the key was already bound, its previous binding disappears.
val add_multi : ('k, 'v Base.List.t, 'cmp) t -> key:'k -> data:'v -> ('k, 'v Base.List.t, 'cmp) t
If key
is not present then add a singleton list, otherwise, cons data onto the head of the existing list.
val remove_multi : ('k, 'v Base.List.t, 'cmp) t -> 'k -> ('k, 'v Base.List.t, 'cmp) t
If k
is present then remove its head element; if result is empty, remove the key.
val find_multi : ('k, 'v Base.List.t, 'cmp) t -> 'k -> 'v Base.List.t
find_multi t key
returns t
's values for key
if key
is present in the table, and returns the empty list otherwise.
val change : ('k, 'v, 'cmp) t -> 'k -> f:('v Base.Option.t -> 'v Base.Option.t) -> ('k, 'v, 'cmp) t
change t key ~f
returns a new map m
that is the same as t
on all keys except for key
, and whose value for key
is defined by f
, i.e., find m key = f (find t
key)
.
val update : ('k, 'v, 'cmp) t -> 'k -> f:('v Base.Option.t -> 'v) -> ('k, 'v, 'cmp) t
update t key ~f
is change t key ~f:(fun o -> Some (f o))
.
val find : ('k, 'v, 'cmp) t -> 'k -> 'v Base.Option.t
Returns the value bound to the given key if it exists, and None
otherwise.
val find_exn : ('k, 'v, 'cmp) t -> 'k -> 'v
Returns the value bound to the given key, raising Caml.Not_found
or Not_found_s
if none exists.
val find_or_error : ('k, 'v, 'cmp) t -> 'k -> 'v Or_error.t
Returns a new map with any binding for the key in question removed.
val mem : ('k, _, 'cmp) t -> 'k -> Base.Bool.t
mem map key
tests whether map
contains a binding for key
.
val iter_keys : ('k, _, _) t -> f:('k -> Base.Unit.t) -> Base.Unit.t
val iter : (_, 'v, _) t -> f:('v -> Base.Unit.t) -> Base.Unit.t
val iteri : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Base.Unit.t) -> Base.Unit.t
module Continue_or_stop : sig ... end
module Finished_or_unfinished : sig ... end
val iteri_until : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Continue_or_stop.t) -> Finished_or_unfinished.t
Iterates until f
returns Stop
. If f
returns Stop
, the final result is Unfinished
. Otherwise, the final result is Finished
.
val iter2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> Base.Unit.t) -> Base.Unit.t
Iterates two maps side by side. The complexity of this function is O(M+N). If two inputs are [(0, a); (1, a)]
and [(1, b); (2, b)]
, f
will be called with [(0, `Left a); (1, `Both (a, b)); (2, `Right b)]
Returns new map with bound values replaced by the result of f
applied to them.
Like map
, but f
takes both key and data as arguments.
val fold : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
Folds over keys and data in map in increasing order of key.
val fold_right : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
Folds over keys and data in map in decreasing order of key.
val fold2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> init:'a -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'a -> 'a) -> 'a
Folds over two maps side by side, like iter2
.
val filter_keys : ('k, 'v, 'cmp) t -> f:('k -> Base.Bool.t) -> ('k, 'v, 'cmp) t
val filter : ('k, 'v, 'cmp) t -> f:('v -> Base.Bool.t) -> ('k, 'v, 'cmp) t
val filteri : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> Base.Bool.t) -> ('k, 'v, 'cmp) t
val filter_map : ('k, 'v1, 'cmp) t -> f:('v1 -> 'v2 Base.Option.t) -> ('k, 'v2, 'cmp) t
Returns new map with bound values filtered by the result of f
applied to them.
val filter_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> 'v2 Base.Option.t) -> ('k, 'v2, 'cmp) t
Like filter_map
, but function takes both key and data as arguments.
val partition_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> [ `Fst of 'v2 | `Snd of 'v3 ]) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
partition_mapi t ~f
returns two new t
s, with each key in t
appearing in exactly one of the result maps depending on its mapping in f
.
val partition_map : ('k, 'v1, 'cmp) t -> f:('v1 -> [ `Fst of 'v2 | `Snd of 'v3 ]) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
partition_map t ~f = partition_mapi t ~f:(fun ~key:_ ~data -> f data)
val partitioni_tf : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> Base.Bool.t) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
partitioni_tf t ~f
=
partition_mapi t ~f:(fun ~key ~data ->
if f ~key ~data
then `Fst data
else `Snd data)
val partition_tf : ('k, 'v, 'cmp) t -> f:('v -> Base.Bool.t) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
partition_tf t ~f = partitioni_tf t ~f:(fun ~key:_ ~data -> f data)
val compare_direct : ('v -> 'v -> Base.Int.t) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> Base.Int.t
Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.
val hash_fold_direct : 'k Base.Hash.folder -> 'v Base.Hash.folder -> ('k, 'v, 'cmp) t Base.Hash.folder
Hash function: a building block to use when hashing data structures containing maps in them. hash_fold_direct hash_fold_key
is compatible with compare_direct
iff hash_fold_key
is compatible with (comparator m).compare
of the map m
being hashed.
val equal : ('v -> 'v -> Base.Bool.t) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> Base.Bool.t
equal cmp m1 m2
tests whether the maps m1
and m2
are equal, that is, contain equal keys and associate them with equal data. cmp
is the equality predicate used to compare the data associated with the keys.
val keys : ('k, _, _) t -> 'k Base.List.t
Returns list of keys in map.
val data : (_, 'v, _) t -> 'v Base.List.t
Returns list of data in map.
val to_alist : ?key_order:[ `Increasing | `Decreasing ] -> ('k, 'v, _) t -> ('k * 'v) Base.List.t
Creates association list from map.
- parameter key_order
default is
`Increasing
val validate : name:('k -> Base.String.t) -> 'v Base.Validate.check -> ('k, 'v, _) t Base.Validate.check
Additional operations on maps
val merge : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> [ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'v3 Base.Option.t) -> ('k, 'v3, 'cmp) t
Merges two maps. The runtime is O(length(t1) + length(t2)). In particular, you shouldn't use this function to merge a list of maps. Consider using merge_skewed
instead.
val merge_skewed : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> combine:(key:'k -> 'v -> 'v -> 'v) -> ('k, 'v, 'cmp) t
A special case of merge
, merge_skewed t1 t2
is a map containing all the bindings of t1
and t2
. Bindings that appear in both t1
and t2
are merged using the combine
function. In a call combine ~key v1 v2
the value v1
comes from t1
and v2
from t2
.
The runtime of merge_skewed
is O(l1 * log(l2))
, where l1
is the length of the smaller map and l2
the length of the larger map. This is likely to be faster than merge
when one of the maps is a lot smaller, or when you merge a list of maps.
module Symmetric_diff_element : sig ... end
val symmetric_diff : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> data_equal:('v -> 'v -> Base.Bool.t) -> ('k, 'v) Symmetric_diff_element.t Sequence.t
symmetric_diff t1 t2 ~data_equal
returns a list of changes between t1
and t2
. It is intended to be efficient in the case where t1
and t2
share a large amount of structure. The keys in the output sequence will be in sorted order.
val fold_symmetric_diff : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> data_equal:('v -> 'v -> Base.Bool.t) -> init:'a -> f:('a -> ('k, 'v) Symmetric_diff_element.t -> 'a) -> 'a
fold_symmetric_diff t1 t2 ~data_equal
folds across an implicit sequence of changes between t1
and t2
, in sorted order by keys. Equivalent to Sequence.fold (symmetric_diff t1 t2 ~data_equal)
, and more efficient.
val min_elt : ('k, 'v, _) t -> ('k * 'v) Base.Option.t
min_elt map
returns Some (key, data)
pair corresponding to the minimum key in map
, None
if map
is empty.
val min_elt_exn : ('k, 'v, _) t -> 'k * 'v
val max_elt : ('k, 'v, _) t -> ('k * 'v) Base.Option.t
max_elt map
returns Some (key, data)
pair corresponding to the maximum key in map
, and None
if map
is empty.
val max_elt_exn : ('k, 'v, _) t -> 'k * 'v
val for_all : ('k, 'v, _) t -> f:('v -> Base.Bool.t) -> Base.Bool.t
val for_alli : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Base.Bool.t) -> Base.Bool.t
val exists : ('k, 'v, _) t -> f:('v -> Base.Bool.t) -> Base.Bool.t
val existsi : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Base.Bool.t) -> Base.Bool.t
val count : ('k, 'v, _) t -> f:('v -> Base.Bool.t) -> Base.Int.t
val counti : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Base.Bool.t) -> Base.Int.t
val split : ('k, 'v, 'cmp) t -> 'k -> ('k, 'v, 'cmp) t * ('k * 'v) Base.Option.t * ('k, 'v, 'cmp) t
split t key
returns a map of keys strictly less than key
, the mapping of key
if any, and a map of keys strictly greater than key
.
Runtime is O(m + log n) where n is the size of the input map, and m is the size of the smaller of the two output maps. The O(m) term is due to the need to calculate the length of the output maps. *
val append : lower_part:('k, 'v, 'cmp) t -> upper_part:('k, 'v, 'cmp) t -> [ `Ok of ('k, 'v, 'cmp) t | `Overlapping_key_ranges ]
append ~lower_part ~upper_part
returns `Ok map
where map
contains all the (key,
value)
pairs from the two input maps if all the keys from lower_part
are less than all the keys from upper_part
. Otherwise it returns `Overlapping_key_ranges
.
Runtime is O(log n) where n is the size of the larger input map. This can be significantly faster than Map.merge
or repeated Map.add
.
assert (match Map.append ~lower_part ~upper_part with
| `Ok whole_map ->
whole_map
= Map.(of_alist_exn (List.append (to_alist lower_part) (to_alist upper_part)))
| `Overlapping_key_ranges -> true);
val subrange : ('k, 'v, 'cmp) t -> lower_bound:'k Maybe_bound.t -> upper_bound:'k Maybe_bound.t -> ('k, 'v, 'cmp) t
subrange t ~lower_bound ~upper_bound
returns a map containing all the entries from t
whose keys lie inside the interval indicated by ~lower_bound
and ~upper_bound
. If this interval is empty, an empty map is returned.
Runtime is O(m + log n) where n is the size of the input map, and m is the size of the output map. The O(m) term is due to the need to calculate the length of the output map.
val fold_range_inclusive : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
fold_range_inclusive t ~min ~max ~init ~f
folds f
(with initial value ~init
) over all keys (and their associated values) that are in the range [min, max]
(inclusive).
val range_to_alist : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> ('k * 'v) Base.List.t
range_to_alist t ~min ~max
returns an associative list of the elements whose keys lie in [min, max]
(inclusive), with the smallest key being at the head of the list.
val closest_key : ('k, 'v, 'cmp) t -> [ `Greater_or_equal_to | `Greater_than | `Less_or_equal_to | `Less_than ] -> 'k -> ('k * 'v) Base.Option.t
closest_key t dir k
returns the (key, value)
pair in t
with key
closest to k
, which satisfies the given inequality bound.
For example, closest_key t `Less_than k
would be the pair with the closest key to k
where key < k
.
to_sequence
can be used to get the same results as closest_key
. It is less efficient for individual lookups but more efficient for finding many elements starting at some value.
val nth : ('k, 'v, _) t -> Base.Int.t -> ('k * 'v) Base.Option.t
nth t n
finds the (key, value) pair of rank n (i.e., such that there are exactly n keys strictly less than the found key), if one exists. O(log(length t) + n) time.
val nth_exn : ('k, 'v, _) t -> Base.Int.t -> 'k * 'v
val rank : ('k, 'v, 'cmp) t -> 'k -> Base.Int.t Base.Option.t
rank t k
if k
is in t
, returns the number of keys strictly less than k
in t
, otherwise None
.
val to_sequence : ?order:[ `Increasing_key | `Decreasing_key ] -> ?keys_greater_or_equal_to:'k -> ?keys_less_or_equal_to:'k -> ('k, 'v, 'cmp) t -> ('k * 'v) Sequence.t
to_sequence ?order ?keys_greater_or_equal_to ?keys_less_or_equal_to t
gives a sequence of key-value pairs between keys_less_or_equal_to
and keys_greater_or_equal_to
inclusive, presented in order
. If keys_greater_or_equal_to > keys_less_or_equal_to
, the sequence is empty. Cost is O(log n) up front and amortized O(1) to produce each element.
- parameter order
`Increasing_key
is the default
val binary_search : ('k, 'v, 'cmp) t -> compare:(key:'k -> data:'v -> 'key -> Base.Int.t) -> [ `Last_strictly_less_than | `Last_less_than_or_equal_to | `Last_equal_to | `First_equal_to | `First_greater_than_or_equal_to | `First_strictly_greater_than ] -> 'key -> ('k * 'v) Base.Option.t
binary_search t ~compare which elt
returns the (key, value)
pair in t
specified by compare
and which
, if one exists.
t
must be sorted in increasing order according to compare
, where compare
and elt
divide t
into three (possibly empty) segments:
| < elt | = elt | > elt |
binary_search
returns an element on the boundary of segments as specified by which
. See the diagram below next to the which
variants.
binary_search
does not check that compare
orders t
, and behavior is unspecified if compare
doesn't order t
. Behavior is also unspecified if compare
mutates t
.
val binary_search_segmented : ('k, 'v, 'cmp) t -> segment_of:(key:'k -> data:'v -> [ `Left | `Right ]) -> [ `Last_on_left | `First_on_right ] -> ('k * 'v) Base.Option.t
binary_search_segmented t ~segment_of which
takes a segment_of
function that divides t
into two (possibly empty) segments:
| segment_of elt = `Left | segment_of elt = `Right |
binary_search_segmented
returns the (key, value)
pair on the boundary of the segments as specified by which
: `Last_on_left
yields the last element of the left segment, while `First_on_right
yields the first element of the right segment. It returns None
if the segment is empty.
binary_search_segmented
does not check that segment_of
segments t
as in the diagram, and behavior is unspecified if segment_of
doesn't segment t
. Behavior is also unspecified if segment_of
mutates t
.
val of_key_set : ('key, 'cmp) Base.Set.t -> f:('key -> 'data) -> ('key, 'data, 'cmp) t
Convert a set to a map. Runs in O(length t)
time plus a call to f
for each key to compute the associated data.
val key_set : ('key, _, 'cmp) t -> ('key, 'cmp) Base.Set.t
Converts a map to a set of its keys. Runs in O(length t)
time.
val quickcheck_generator : ('k, 'cmp) comparator -> 'k Quickcheck.Generator.t -> 'v Quickcheck.Generator.t -> ('k, 'v, 'cmp) t Quickcheck.Generator.t
val quickcheck_observer : 'k Quickcheck.Observer.t -> 'v Quickcheck.Observer.t -> ('k, 'v, 'cmp) t Quickcheck.Observer.t
val quickcheck_shrinker : 'k Quickcheck.Shrinker.t -> 'v Quickcheck.Shrinker.t -> ('k, 'v, 'cmp) t Quickcheck.Shrinker.t
This shrinker and the other shrinkers for maps and trees produce a shrunk value by dropping a key-value pair, shrinking a key or shrinking a value. A shrunk key will override an existing key's value.
Which Map module should you use?
Interface design details
module Using_comparator : sig ... end
module type For_deriving = Map_intf.For_deriving
include For_deriving with type ('a, 'b, 'c) t := ('a, 'b, 'c) t
module type Sexp_of_m = sig ... end
module type M_of_sexp = sig ... end
module type Compare_m = sig ... end
module type Equal_m = sig ... end
module type Hash_fold_m = Base.Hasher.S
val sexp_of_m__t : (module Sexp_of_m with type t = 'k) -> ('v -> Base.Sexp.t) -> ('a, 'b, 'c) t -> Base.Sexp.t
val m__t_of_sexp : (module M_of_sexp with type comparator_witness = 'cmp and type t = 'k) -> (Base.Sexp.t -> 'v) -> Base.Sexp.t -> ('a, 'b, 'c) t
val compare_m__t : (module Compare_m) -> ('v -> 'v -> int) -> ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> int
val hash_fold_m__t : (module Hash_fold_m with type t = 'k) -> (Base.Hash.state -> 'v -> Base.Hash.state) -> Base.Hash.state -> ('a, 'b, 'c) t -> Base.Hash.state
module type Key_plain = Map_intf.Key_plain
module type Key = Map_intf.Key
module type Key_binable = Map_intf.Key_binable
module type S_plain = Map_intf.S_plain
module type S = Map_intf.S
module type S_binable = Map_intf.S_binable
module Make_plain_using_comparator : functor (Key : sig ... end) -> S_plain with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witness
module Make_using_comparator : functor (Key : sig ... end) -> S with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witness
module Make_binable : functor (Key : Key_binable) -> S_binable with type Key.t = Key.t
module Make_binable_using_comparator : functor (Key : sig ... end) -> S_binable with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witness
module Key_bin_io = Map_intf.Key_bin_io
The following *bin*
functions support bin-io on base-style maps, e.g.:
val bin_shape_m__t : ('a, 'c) Key_bin_io.t -> Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_m__t : ('a, 'c) Key_bin_io.t -> 'b Bin_prot.Size.sizer -> ('a, 'b, 'c) t Bin_prot.Size.sizer
val bin_write_m__t : ('a, 'c) Key_bin_io.t -> 'b Bin_prot.Write.writer -> ('a, 'b, 'c) t Bin_prot.Write.writer
val bin_read_m__t : ('a, 'c) Key_bin_io.t -> 'b Bin_prot.Read.reader -> ('a, 'b, 'c) t Bin_prot.Read.reader
val __bin_read_m__t__ : ('a, 'c) Key_bin_io.t -> 'b Bin_prot.Read.reader -> (Base.Int.t -> ('a, 'b, 'c) t) Bin_prot.Read.reader
module Stable : sig ... end
The following functors may be used to define stable modules