Theory Brouwer_Fixpoint
section ‹Brouwer's Fixed Point Theorem›
theory Brouwer_Fixpoint
imports Homeomorphism Derivative
begin
subsection ‹Retractions›
lemma retract_of_contractible:
assumes "contractible T" "S retract_of T"
shows "contractible S"
using assms
apply (clarsimp simp add: retract_of_def contractible_def retraction_def homotopic_with image_subset_iff_funcset)
apply (rule_tac x="r a" in exI)
apply (rule_tac x="r ∘ h" in exI)
apply (intro conjI continuous_intros continuous_on_compose)
apply (erule continuous_on_subset | force)+
done
lemma retract_of_path_connected:
"⟦path_connected T; S retract_of T⟧ ⟹ path_connected S"
by (metis path_connected_continuous_image retract_of_def retraction)
lemma retract_of_simply_connected:
assumes T: "simply_connected T" and "S retract_of T"
shows "simply_connected S"
proof -
obtain r where r: "retraction T S r"
using assms by (metis retract_of_def)
have "S ⊆ T"
by (meson ‹retraction T S r› retraction)
then have "(λa. a) ∈ S → T"
by blast
then show ?thesis
using simply_connected_retraction_gen [OF T]
by (metis (no_types) r retraction retraction_refl)
qed
lemma retract_of_homotopically_trivial:
assumes ts: "T retract_of S"
and hom: "⋀f g. ⟦continuous_on U f; f ∈ U → S;
continuous_on U g; g ∈ U → S⟧
⟹ homotopic_with_canon (λx. True) U S f g"
and "continuous_on U f" "f ∈ U → T"
and "continuous_on U g" "g ∈ U → T"
shows "homotopic_with_canon (λx. True) U T f g"
proof -
obtain r where "r ∈ S → S" "continuous_on S r" "∀x∈S. r (r x) = r x" "T = r ` S"
using ts by (auto simp: retract_of_def retraction)
then obtain k where "Retracts S r T k"
unfolding Retracts_def using continuous_on_id by blast
then show ?thesis
by (rule Retracts.homotopically_trivial_retraction_gen) (use assms hom in force)+
qed
lemma retract_of_homotopically_trivial_null:
assumes ts: "T retract_of S"
and hom: "⋀f. ⟦continuous_on U f; f ∈ U → S⟧
⟹ ∃c. homotopic_with_canon (λx. True) U S f (λx. c)"
and "continuous_on U f" "f ∈ U → T"
obtains c where "homotopic_with_canon (λx. True) U T f (λx. c)"
proof -
obtain r where "r ∈ S → S" "continuous_on S r" "∀x∈S. r (r x) = r x" "T = r ` S"
using ts by (auto simp: retract_of_def retraction)
then obtain k where "Retracts S r T k"
unfolding Retracts_def by fastforce
then show ?thesis
proof (rule Retracts.homotopically_trivial_retraction_null_gen)
show "⋀f. ⟦continuous_on U f; f ∈ U → S⟧
⟹ ∃c. homotopic_with_canon (λa. True) U S f (λx. c)"
using hom by blast
qed (use assms that in auto)
qed
lemma retraction_openin_vimage_iff:
"openin (top_of_set S) (S ∩ r -` U) ⟷ openin (top_of_set T) U"
if "retraction S T r" and "U ⊆ T"
by (simp add: retraction_openin_vimage_iff that)
lemma retract_of_locally_compact:
fixes S :: "'a :: {heine_borel,real_normed_vector} set"
shows "⟦ locally compact S; T retract_of S⟧ ⟹ locally compact T"
by (metis locally_compact_closedin closedin_retract)
lemma homotopic_into_retract:
"⟦f ∈ S → T; g ∈ S → T; T retract_of U; homotopic_with_canon (λx. True) S U f g⟧
⟹ homotopic_with_canon (λx. True) S T f g"
apply (subst (asm) homotopic_with_def)
apply (simp add: homotopic_with retract_of_def retraction_def Pi_iff, clarify)
apply (rule_tac x="r ∘ h" in exI)
by (smt (verit, ccfv_SIG) comp_def continuous_on_compose continuous_on_subset image_subset_iff)
lemma retract_of_locally_connected:
assumes "locally connected T" "S retract_of T"
shows "locally connected S"
using assms
by (metis retraction_openin_vimage_iff idempotent_imp_retraction locally_connected_quotient_image retract_ofE)
lemma retract_of_locally_path_connected:
assumes "locally path_connected T" "S retract_of T"
shows "locally path_connected S"
using assms
by (metis retraction_openin_vimage_iff idempotent_imp_retraction locally_path_connected_quotient_image retract_ofE)
text ‹A few simple lemmas about deformation retracts›
lemma deformation_retract_imp_homotopy_eqv:
fixes S :: "'a::euclidean_space set"
assumes "homotopic_with_canon (λx. True) S S id r" and r: "retraction S T r"
shows "S homotopy_eqv T"
proof -
have "homotopic_with_canon (λx. True) S S (id ∘ r) id"
by (simp add: assms(1) homotopic_with_symD)
moreover have "homotopic_with_canon (λx. True) T T (r ∘ id) id"
using r unfolding retraction_def
by (metis eq_id_iff homotopic_with_id2 topspace_euclidean_subtopology)
ultimately
show ?thesis
unfolding homotopy_equivalent_space_def
by (smt (verit, del_insts) continuous_map_id continuous_map_subtopology_eu id_def r retraction retraction_comp subset_refl)
qed
lemma deformation_retract:
fixes S :: "'a::euclidean_space set"
shows "(∃r. homotopic_with_canon (λx. True) S S id r ∧ retraction S T r) ⟷
T retract_of S ∧ (∃f. homotopic_with_canon (λx. True) S S id f ∧ f ∈ S → T)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (auto simp: retract_of_def retraction_def)
next
assume R: ?rhs
have "⋀r f. ⟦T ⊆ S; continuous_on S r; homotopic_with_canon (λx. True) S S id f;
f ∈ S → T; r ∈ S → T; ∀x∈T. r x = x⟧
⟹ homotopic_with_canon (λx. True) S S f r"
apply (rule_tac f = "r ∘ f" and g="r ∘ id" in homotopic_with_eq)
apply (rule_tac Y=S in homotopic_with_compose_continuous_left)
apply (auto simp: homotopic_with_sym Pi_iff)
done
with R homotopic_with_trans show ?lhs
unfolding retract_of_def retraction_def by blast
qed
lemma deformation_retract_of_contractible_sing:
fixes S :: "'a::euclidean_space set"
assumes "contractible S" "a ∈ S"
obtains r where "homotopic_with_canon (λx. True) S S id r" "retraction S {a} r"
proof -
have "{a} retract_of S"
by (simp add: ‹a ∈ S›)
moreover have "homotopic_with_canon (λx. True) S S id (λx. a)"
using assms
by (auto simp: contractible_def homotopic_into_contractible image_subset_iff)
moreover have "(λx. a) ∈ S → {a}"
by (simp add: image_subsetI)
ultimately show ?thesis
by (metis that deformation_retract)
qed
lemma continuous_on_compact_surface_projection_aux:
fixes S :: "'a::t2_space set"
assumes "compact S" "S ⊆ T" "image q T ⊆ S"
and contp: "continuous_on T p"
and "⋀x. x ∈ S ⟹ q x = x"
and [simp]: "⋀x. x ∈ T ⟹ q(p x) = q x"
and "⋀x. x ∈ T ⟹ p(q x) = p x"
shows "continuous_on T q"
proof -
have *: "image p T = image p S"
using assms by auto (metis imageI subset_iff)
have contp': "continuous_on S p"
by (rule continuous_on_subset [OF contp ‹S ⊆ T›])
have "continuous_on (p ` T) q"
by (simp add: "*" assms(1) assms(2) assms(5) continuous_on_inv contp' rev_subsetD)
then have "continuous_on T (q ∘ p)"
by (rule continuous_on_compose [OF contp])
then show ?thesis
by (rule continuous_on_eq [of _ "q ∘ p"]) (simp add: o_def)
qed
lemma continuous_on_compact_surface_projection:
fixes S :: "'a::real_normed_vector set"
assumes "compact S"
and S: "S ⊆ V - {0}" and "cone V"
and iff: "⋀x k. x ∈ V - {0} ⟹ 0 < k ∧ (k *⇩R x) ∈ S ⟷ d x = k"
shows "continuous_on (V - {0}) (λx. d x *⇩R x)"
proof (rule continuous_on_compact_surface_projection_aux [OF ‹compact S› S])
show "(λx. d x *⇩R x) ` (V - {0}) ⊆ S"
using iff by auto
show "continuous_on (V - {0}) (λx. inverse(norm x) *⇩R x)"
by (intro continuous_intros) force
show "⋀x. x ∈ S ⟹ d x *⇩R x = x"
by (metis S zero_less_one local.iff scaleR_one subset_eq)
show "d (x /⇩R norm x) *⇩R (x /⇩R norm x) = d x *⇩R x" if "x ∈ V - {0}" for x
using iff [of "inverse(norm x) *⇩R x" "norm x * d x", symmetric] iff that ‹cone V›
by (simp add: field_simps cone_def zero_less_mult_iff)
show "d x *⇩R x /⇩R norm (d x *⇩R x) = x /⇩R norm x" if "x ∈ V - {0}" for x
proof -
have "0 < d x"
using local.iff that by blast
then show ?thesis
by simp
qed
qed
subsection ‹Kuhn Simplices›
lemma bij_betw_singleton_eq:
assumes f: "bij_betw f A B" and g: "bij_betw g A B" and a: "a ∈ A"
assumes eq: "(⋀x. x ∈ A ⟹ x ≠ a ⟹ f x = g x)"
shows "f a = g a"
proof -
have "f ` (A - {a}) = g ` (A - {a})"
by (intro image_cong) (simp_all add: eq)
then have "B - {f a} = B - {g a}"
using f g a by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff)
moreover have "f a ∈ B" "g a ∈ B"
using f g a by (auto simp: bij_betw_def)
ultimately show ?thesis
by auto
qed
lemmas swap_apply1 = swap_apply(1)
lemmas swap_apply2 = swap_apply(2)
lemma pointwise_minimal_pointwise_maximal:
fixes s :: "(nat ⇒ nat) set"
assumes "finite s"
and "s ≠ {}"
and "∀x∈s. ∀y∈s. x ≤ y ∨ y ≤ x"
shows "∃a∈s. ∀x∈s. a ≤ x"
and "∃a∈s. ∀x∈s. x ≤ a"
using assms
proof (induct s rule: finite_ne_induct)
case (insert b s)
assume *: "∀x∈insert b s. ∀y∈insert b s. x ≤ y ∨ y ≤ x"
then obtain u l where "l ∈ s" "∀b∈s. l ≤ b" "u ∈ s" "∀b∈s. b ≤ u"
using insert by auto
with * show "∃a∈insert b s. ∀x∈insert b s. a ≤ x" "∃a∈insert b s. ∀x∈insert b s. x ≤ a"
by (metis insert_iff order.trans)+
qed auto
lemma kuhn_labelling_lemma:
fixes P Q :: "'a::euclidean_space ⇒ bool"
assumes "∀x. P x ⟶ P (f x)"
and "∀x. P x ⟶ (∀i∈Basis. Q i ⟶ 0 ≤ x∙i ∧ x∙i ≤ 1)"
shows "∃l. (∀x.∀i∈Basis. l x i ≤ (1::nat)) ∧
(∀x.∀i∈Basis. P x ∧ Q i ∧ (x∙i = 0) ⟶ (l x i = 0)) ∧
(∀x.∀i∈Basis. P x ∧ Q i ∧ (x∙i = 1) ⟶ (l x i = 1)) ∧
(∀x.∀i∈Basis. P x ∧ Q i ∧ (l x i = 0) ⟶ x∙i ≤ f x∙i) ∧
(∀x.∀i∈Basis. P x ∧ Q i ∧ (l x i = 1) ⟶ f x∙i ≤ x∙i)"
proof -
{ fix x i
let ?R = "λy. (P x ∧ Q i ∧ x ∙ i = 0 ⟶ y = (0::nat)) ∧
(P x ∧ Q i ∧ x ∙ i = 1 ⟶ y = 1) ∧
(P x ∧ Q i ∧ y = 0 ⟶ x ∙ i ≤ f x ∙ i) ∧
(P x ∧ Q i ∧ y = 1 ⟶ f x ∙ i ≤ x ∙ i)"
{ assume "P x" "Q i" "i ∈ Basis" with assms have "0 ≤ f x ∙ i ∧ f x ∙ i ≤ 1" by auto }
then have "i ∈ Basis ⟹ ?R 0 ∨ ?R 1" by auto }
then show ?thesis
unfolding all_conj_distrib[symmetric] Ball_def
by (subst choice_iff[symmetric])+ blast
qed
subsubsection ‹The key "counting" observation, somewhat abstracted›
lemma kuhn_counting_lemma:
fixes bnd compo compo' face S F
defines "nF s == card {f∈F. face f s ∧ compo' f}"
assumes [simp, intro]: "finite F" and [simp, intro]: "finite S"
and "⋀f. f ∈ F ⟹ bnd f ⟹ card {s∈S. face f s} = 1"
and "⋀f. f ∈ F ⟹ ¬ bnd f ⟹ card {s∈S. face f s} = 2"
and "⋀s. s ∈ S ⟹ compo s ⟹ nF s = 1"
and "⋀s. s ∈ S ⟹ ¬ compo s ⟹ nF s = 0 ∨ nF s = 2"
and "odd (card {f∈F. compo' f ∧ bnd f})"
shows "odd (card {s∈S. compo s})"
proof -
have "(∑s | s ∈ S ∧ ¬ compo s. nF s) + (∑s | s ∈ S ∧ compo s. nF s) = (∑s∈S. nF s)"
by (subst sum.union_disjoint[symmetric]) (auto intro!: sum.cong)
also have "… = (∑s∈S. card {f ∈ {f∈F. compo' f ∧ bnd f}. face f s}) +
(∑s∈S. card {f ∈ {f∈F. compo' f ∧ ¬ bnd f}. face f s})"
unfolding sum.distrib[symmetric]
by (subst card_Un_disjoint[symmetric])
(auto simp: nF_def intro!: sum.cong arg_cong[where f=card])
also have "… = 1 * card {f∈F. compo' f ∧ bnd f} + 2 * card {f∈F. compo' f ∧ ¬ bnd f}"
using assms(4,5) by (fastforce intro!: arg_cong2[where f="(+)"] sum_multicount)
finally have "odd ((∑s | s ∈ S ∧ ¬ compo s. nF s) + card {s∈S. compo s})"
using assms(6,8) by simp
moreover have "(∑s | s ∈ S ∧ ¬ compo s. nF s) =
(∑s | s ∈ S ∧ ¬ compo s ∧ nF s = 0. nF s) + (∑s | s ∈ S ∧ ¬ compo s ∧ nF s = 2. nF s)"
using assms(7) by (subst sum.union_disjoint[symmetric]) (fastforce intro!: sum.cong)+
ultimately show ?thesis
by auto
qed
subsubsection ‹The odd/even result for faces of complete vertices, generalized›
lemma kuhn_complete_lemma:
assumes [simp]: "finite simplices"
and face: "⋀f s. face f s ⟷ (∃a∈s. f = s - {a})"
and card_s[simp]: "⋀s. s ∈ simplices ⟹ card s = n + 2"
and rl_bd: "⋀s. s ∈ simplices ⟹ rl ` s ⊆ {..Suc n}"
and bnd: "⋀f s. s ∈ simplices ⟹ face f s ⟹ bnd f ⟹ card {s∈simplices. face f s} = 1"
and nbnd: "⋀f s. s ∈ simplices ⟹ face f s ⟹ ¬ bnd f ⟹ card {s∈simplices. face f s} = 2"
and odd_card: "odd (card {f. (∃s∈simplices. face f s) ∧ rl ` f = {..n} ∧ bnd f})"
shows "odd (card {s∈simplices. (rl ` s = {..Suc n})})"
proof (rule kuhn_counting_lemma)
have finite_s[simp]: "⋀s. s ∈ simplices ⟹ finite s"
by (metis add_is_0 zero_neq_numeral card.infinite assms(3))
let ?F = "{f. ∃s∈simplices. face f s}"
have F_eq: "?F = (⋃s∈simplices. ⋃a∈s. {s - {a}})"
by (auto simp: face)
show "finite ?F"
using ‹finite simplices› unfolding F_eq by auto
show "card {s ∈ simplices. face f s} = 1" if "f ∈ ?F" "bnd f" for f
using bnd that by auto
show "card {s ∈ simplices. face f s} = 2" if "f ∈ ?F" "¬ bnd f" for f
using nbnd that by auto
show "odd (card {f ∈ {f. ∃s∈simplices. face f s}. rl ` f = {..n} ∧ bnd f})"
using odd_card by simp
fix s assume s[simp]: "s ∈ simplices"
let ?S = "{f ∈ {f. ∃s∈simplices. face f s}. face f s ∧ rl ` f = {..n}}"
have "?S = (λa. s - {a}) ` {a∈s. rl ` (s - {a}) = {..n}}"
using s by (fastforce simp: face)
then have card_S: "card ?S = card {a∈s. rl ` (s - {a}) = {..n}}"
by (auto intro!: card_image inj_onI)
{ assume rl: "rl ` s = {..Suc n}"
then have inj_rl: "inj_on rl s"
by (intro eq_card_imp_inj_on) auto
moreover obtain a where "rl a = Suc n" "a ∈ s"
by (metis atMost_iff image_iff le_Suc_eq rl)
ultimately have n: "{..n} = rl ` (s - {a})"
by (auto simp: inj_on_image_set_diff rl)
have "{a∈s. rl ` (s - {a}) = {..n}} = {a}"
using inj_rl ‹a ∈ s› by (auto simp: n inj_on_image_eq_iff[OF inj_rl])
then show "card ?S = 1"
unfolding card_S by simp }
{ assume rl: "rl ` s ≠ {..Suc n}"
show "card ?S = 0 ∨ card ?S = 2"
proof cases
assume *: "{..n} ⊆ rl ` s"
with rl rl_bd[OF s] have rl_s: "rl ` s = {..n}"
by (auto simp: atMost_Suc subset_insert_iff split: if_split_asm)
then have "¬ inj_on rl s"
by (intro pigeonhole) simp
then obtain a b where ab: "a ∈ s" "b ∈ s" "rl a = rl b" "a ≠ b"
by (auto simp: inj_on_def)
then have eq: "rl ` (s - {a}) = rl ` s"
by auto
with ab have inj: "inj_on rl (s - {a})"
by (intro eq_card_imp_inj_on) (auto simp: rl_s card_Diff_singleton_if)
{ fix x assume "x ∈ s" "x ∉ {a, b}"
then have "rl ` s - {rl x} = rl ` ((s - {a}) - {x})"
by (auto simp: eq inj_on_image_set_diff[OF inj])
also have "… = rl ` (s - {x})"
using ab ‹x ∉ {a, b}› by auto
also assume "… = rl ` s"
finally have False
using ‹x∈s› by auto }
moreover
{ fix x assume "x ∈ {a, b}" with ab have "x ∈ s ∧ rl ` (s - {x}) = rl ` s"
by (simp add: set_eq_iff image_iff Bex_def) metis }
ultimately have "{a∈s. rl ` (s - {a}) = {..n}} = {a, b}"
unfolding rl_s[symmetric] by fastforce
with ‹a ≠ b› show "card ?S = 0 ∨ card ?S = 2"
unfolding card_S by simp
next
assume "¬ {..n} ⊆ rl ` s"
then have "⋀x. rl ` (s - {x}) ≠ {..n}"
by auto
then show "card ?S = 0 ∨ card ?S = 2"
unfolding card_S by simp
qed }
qed fact
locale kuhn_simplex =
fixes p n and base upd and S :: "(nat ⇒ nat) set"
assumes base: "base ∈ {..< n} → {..< p}"
assumes base_out: "⋀i. n ≤ i ⟹ base i = p"
assumes upd: "bij_betw upd {..< n} {..< n}"
assumes s_pre: "S = (λi j. if j ∈ upd`{..< i} then Suc (base j) else base j) ` {.. n}"
begin
definition "enum i j = (if j ∈ upd`{..< i} then Suc (base j) else base j)"
lemma s_eq: "S = enum ` {.. n}"
unfolding s_pre enum_def[abs_def] ..
lemma upd_space: "i < n ⟹ upd i < n"
using upd by (auto dest!: bij_betwE)
lemma s_space: "S ⊆ {..< n} → {.. p}"
proof -
{ fix i assume "i ≤ n" then have "enum i ∈ {..< n} → {.. p}"
proof (induct i)
case 0 then show ?case
using base by (auto simp: Pi_iff less_imp_le enum_def)
next
case (Suc i) with base show ?case
by (auto simp: Pi_iff Suc_le_eq less_imp_le enum_def intro: upd_space)
qed }
then show ?thesis
by (auto simp: s_eq)
qed
lemma inj_upd: "inj_on upd {..< n}"
using upd by (simp add: bij_betw_def)
lemma inj_enum: "inj_on enum {.. n}"
proof -
{ fix x y :: nat assume "x ≠ y" "x ≤ n" "y ≤ n"
with upd have "upd ` {..< x} ≠ upd ` {..< y}"
by (subst inj_on_image_eq_iff[where C="{..< n}"]) (auto simp: bij_betw_def)
then have "enum x ≠ enum y"
by (auto simp: enum_def fun_eq_iff) }
then show ?thesis
by (auto simp: inj_on_def)
qed
lemma enum_0: "enum 0 = base"
by (simp add: enum_def[abs_def])
lemma base_in_s: "base ∈ S"
unfolding s_eq by (subst enum_0[symmetric]) auto
lemma enum_in: "i ≤ n ⟹ enum i ∈ S"
unfolding s_eq by auto
lemma one_step:
assumes a: "a ∈ S" "j < n"
assumes *: "⋀a'. a' ∈ S ⟹ a' ≠ a ⟹ a' j = p'"
shows "a j ≠ p'"
proof
assume "a j = p'"
with * a have "⋀a'. a' ∈ S ⟹ a' j = p'"
by auto
then have "⋀i. i ≤ n ⟹ enum i j = p'"
unfolding s_eq by auto
from this[of 0] this[of n] have "j ∉ upd ` {..< n}"
by (auto simp: enum_def fun_eq_iff split: if_split_asm)
with upd ‹j < n› show False
by (auto simp: bij_betw_def)
qed
lemma upd_inj: "i < n ⟹ j < n ⟹ upd i = upd j ⟷ i = j"
using upd by (auto simp: bij_betw_def inj_on_eq_iff)
lemma upd_surj: "upd ` {..< n} = {..< n}"
using upd by (auto simp: bij_betw_def)
lemma in_upd_image: "A ⊆ {..< n} ⟹ i < n ⟹ upd i ∈ upd ` A ⟷ i ∈ A"
using inj_on_image_mem_iff[of upd "{..< n}"] upd
by (auto simp: bij_betw_def)
lemma enum_inj: "i ≤ n ⟹ j ≤ n ⟹ enum i = enum j ⟷ i = j"
using inj_enum by (auto simp: inj_on_eq_iff)
lemma in_enum_image: "A ⊆ {.. n} ⟹ i ≤ n ⟹ enum i ∈ enum ` A ⟷ i ∈ A"
using inj_on_image_mem_iff[OF inj_enum] by auto
lemma enum_mono: "i ≤ n ⟹ j ≤ n ⟹ enum i ≤ enum j ⟷ i ≤ j"
by (auto simp: enum_def le_fun_def in_upd_image Ball_def[symmetric])
lemma enum_strict_mono: "i ≤ n ⟹ j ≤ n ⟹ enum i < enum j ⟷ i < j"
using enum_mono[of i j] enum_inj[of i j] by (auto simp: le_less)
lemma chain: "a ∈ S ⟹ b ∈ S ⟹ a ≤ b ∨ b ≤ a"
by (auto simp: s_eq enum_mono)
lemma less: "a ∈ S ⟹ b ∈ S ⟹ a i < b i ⟹ a < b"
using chain[of a b] by (auto simp: less_fun_def le_fun_def not_le[symmetric])
lemma enum_0_bot: "a ∈ S ⟹ a = enum 0 ⟷ (∀a'∈S. a ≤ a')"
unfolding s_eq by (auto simp: enum_mono Ball_def)
lemma enum_n_top: "a ∈ S ⟹ a = enum n ⟷ (∀a'∈S. a' ≤ a)"
unfolding s_eq by (auto simp: enum_mono Ball_def)
lemma enum_Suc: "i < n ⟹ enum (Suc i) = (enum i)(upd i := Suc (enum i (upd i)))"
by (auto simp: fun_eq_iff enum_def upd_inj)
lemma enum_eq_p: "i ≤ n ⟹ n ≤ j ⟹ enum i j = p"
by (induct i) (auto simp: enum_Suc enum_0 base_out upd_space not_less[symmetric])
lemma out_eq_p: "a ∈ S ⟹ n ≤ j ⟹ a j = p"
unfolding s_eq by (auto simp: enum_eq_p)
lemma s_le_p: "a ∈ S ⟹ a j ≤ p"
using out_eq_p[of a j] s_space by (cases "j < n") auto
lemma le_Suc_base: "a ∈ S ⟹ a j ≤ Suc (base j)"
unfolding s_eq by (auto simp: enum_def)
lemma base_le: "a ∈ S ⟹ base j ≤ a j"
unfolding s_eq by (auto simp: enum_def)
lemma enum_le_p: "i ≤ n ⟹ j < n ⟹ enum i j ≤ p"
using enum_in[of i] s_space by auto
lemma enum_less: "a ∈ S ⟹ i < n ⟹ enum i < a ⟷ enum (Suc i) ≤ a"
unfolding s_eq by (auto simp: enum_strict_mono enum_mono)
lemma ksimplex_0:
"n = 0 ⟹ S = {(λx. p)}"
using s_eq enum_def base_out by auto
lemma replace_0:
assumes "j < n" "a ∈ S" and p: "∀x∈S - {a}. x j = 0" and "x ∈ S"
shows "x ≤ a"
proof cases
assume "x ≠ a"
have "a j ≠ 0"
using assms by (intro one_step[where a=a]) auto
with less[OF ‹x∈S› ‹a∈S›, of j] p[rule_format, of x] ‹x ∈ S› ‹x ≠ a›
show ?thesis
by auto
qed simp
lemma replace_1:
assumes "j < n" "a ∈ S" and p: "∀x∈S - {a}. x j = p" and "x ∈ S"
shows "a ≤ x"
proof cases
assume "x ≠ a"
have "a j ≠ p"
using assms by (intro one_step[where a=a]) auto
with enum_le_p[of _ j] ‹j < n› ‹a∈S›
have "a j < p"
by (auto simp: less_le s_eq)
with less[OF ‹a∈S› ‹x∈S›, of j] p[rule_format, of x] ‹x ∈ S› ‹x ≠ a›
show ?thesis
by auto
qed simp
end
locale kuhn_simplex_pair = s: kuhn_simplex p n b_s u_s s + t: kuhn_simplex p n b_t u_t t
for p n b_s u_s s b_t u_t t
begin
lemma enum_eq:
assumes l: "i ≤ l" "l ≤ j" and "j + d ≤ n"
assumes eq: "s.enum ` {i .. j} = t.enum ` {i + d .. j + d}"
shows "s.enum l = t.enum (l + d)"
using l proof (induct l rule: dec_induct)
case base
then have s: "s.enum i ∈ t.enum ` {i + d .. j + d}" and t: "t.enum (i + d) ∈ s.enum ` {i .. j}"
using eq by auto
from t ‹i ≤ j› ‹j + d ≤ n› have "s.enum i ≤ t.enum (i + d)"
by (auto simp: s.enum_mono)
moreover from s ‹i ≤ j› ‹j + d ≤ n› have "t.enum (i + d) ≤ s.enum i"
by (auto simp: t.enum_mono)
ultimately show ?case
by auto
next
case (step l)
moreover from step.prems ‹j + d ≤ n› have
"s.enum l < s.enum (Suc l)"
"t.enum (l + d) < t.enum (Suc l + d)"
by (simp_all add: s.enum_strict_mono t.enum_strict_mono)
moreover have
"s.enum (Suc l) ∈ t.enum ` {i + d .. j + d}"
"t.enum (Suc l + d) ∈ s.enum ` {i .. j}"
using step ‹j + d ≤ n› eq by (auto simp: s.enum_inj t.enum_inj)
ultimately have "s.enum (Suc l) = t.enum (Suc (l + d))"
using ‹j + d ≤ n›
by (intro antisym s.enum_less[THEN iffD1] t.enum_less[THEN iffD1])
(auto intro!: s.enum_in t.enum_in)
then show ?case by simp
qed
lemma ksimplex_eq_bot:
assumes a: "a ∈ s" "⋀a'. a' ∈ s ⟹ a ≤ a'"
assumes b: "b ∈ t" "⋀b'. b' ∈ t ⟹ b ≤ b'"
assumes eq: "s - {a} = t - {b}"
shows "s = t"
proof cases
assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
next
assume "n ≠ 0"
have "s.enum 0 = (s.enum (Suc 0)) (u_s 0 := s.enum (Suc 0) (u_s 0) - 1)"
"t.enum 0 = (t.enum (Suc 0)) (u_t 0 := t.enum (Suc 0) (u_t 0) - 1)"
using ‹n ≠ 0› by (simp_all add: s.enum_Suc t.enum_Suc)
moreover have e0: "a = s.enum 0" "b = t.enum 0"
using a b by (simp_all add: s.enum_0_bot t.enum_0_bot)
moreover
{ fix j assume "0 < j" "j ≤ n"
moreover have "s - {a} = s.enum ` {Suc 0 .. n}" "t - {b} = t.enum ` {Suc 0 .. n}"
unfolding s.s_eq t.s_eq e0 by (auto simp: s.enum_inj t.enum_inj)
ultimately have "s.enum j = t.enum j"
using enum_eq[of "1" j n 0] eq by auto }
note enum_eq = this
then have "s.enum (Suc 0) = t.enum (Suc 0)"
using ‹n ≠ 0› by auto
moreover
{ fix j assume "Suc j < n"
with enum_eq[of "Suc j"] enum_eq[of "Suc (Suc j)"]
have "u_s (Suc j) = u_t (Suc j)"
using s.enum_Suc[of "Suc j"] t.enum_Suc[of "Suc j"]
by (auto simp: fun_eq_iff split: if_split_asm) }
then have "⋀j. 0 < j ⟹ j < n ⟹ u_s j = u_t j"
by (auto simp: gr0_conv_Suc)
with ‹n ≠ 0› have "u_t 0 = u_s 0"
by (intro bij_betw_singleton_eq[OF t.upd s.upd, of 0]) auto
ultimately have "a = b"
by simp
with assms show "s = t"
by auto
qed
lemma ksimplex_eq_top:
assumes a: "a ∈ s" "⋀a'. a' ∈ s ⟹ a' ≤ a"
assumes b: "b ∈ t" "⋀b'. b' ∈ t ⟹ b' ≤ b"
assumes eq: "s - {a} = t - {b}"
shows "s = t"
proof (cases n)
assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
next
case (Suc n')
have "s.enum n = (s.enum n') (u_s n' := Suc (s.enum n' (u_s n')))"
"t.enum n = (t.enum n') (u_t n' := Suc (t.enum n' (u_t n')))"
using Suc by (simp_all add: s.enum_Suc t.enum_Suc)
moreover have en: "a = s.enum n" "b = t.enum n"
using a b by (simp_all add: s.enum_n_top t.enum_n_top)
moreover
{ fix j assume "j < n"
moreover have "s - {a} = s.enum ` {0 .. n'}" "t - {b} = t.enum ` {0 .. n'}"
unfolding s.s_eq t.s_eq en by (auto simp: s.enum_inj t.enum_inj Suc)
ultimately have "s.enum j = t.enum j"
using enum_eq[of "0" j n' 0] eq Suc by auto }
note enum_eq = this
then have "s.enum n' = t.enum n'"
using Suc by auto
moreover
{ fix j assume "j < n'"
with enum_eq[of j] enum_eq[of "Suc j"]
have "u_s j = u_t j"
using s.enum_Suc[of j] t.enum_Suc[of j]
by (auto simp: Suc fun_eq_iff split: if_split_asm) }
then have "⋀j. j < n' ⟹ u_s j = u_t j"
by (auto simp: gr0_conv_Suc)
then have "u_t n' = u_s n'"
by (intro bij_betw_singleton_eq[OF t.upd s.upd, of n']) (auto simp: Suc)
ultimately have "a = b"
by simp
with assms show "s = t"
by auto
qed
end
inductive ksimplex for p n :: nat where
ksimplex: "kuhn_simplex p n base upd s ⟹ ksimplex p n s"
lemma finite_ksimplexes: "finite {s. ksimplex p n s}"
proof (rule finite_subset)
{ fix a s assume "ksimplex p n s" "a ∈ s"
then obtain b u where "kuhn_simplex p n b u s" by (auto elim: ksimplex.cases)
then interpret kuhn_simplex p n b u s .
from s_space ‹a ∈ s› out_eq_p[OF ‹a ∈ s›]
have "a ∈ (λf x. if n ≤ x then p else f x) ` ({..< n} →⇩E {.. p})"
by (auto simp: image_iff subset_eq Pi_iff split: if_split_asm
intro!: bexI[of _ "restrict a {..< n}"]) }
then show "{s. ksimplex p n s} ⊆ Pow ((λf x. if n ≤ x then p else f x) ` ({..< n} →⇩E {.. p}))"
by auto
qed (simp add: finite_PiE)
lemma ksimplex_card:
assumes "ksimplex p n s" shows "card s = Suc n"
using assms proof cases
case (ksimplex u b)
then interpret kuhn_simplex p n u b s .
show ?thesis
by (simp add: card_image s_eq inj_enum)
qed
lemma simplex_top_face:
assumes "0 < p" "∀x∈s'. x n = p"
shows "ksimplex p n s' ⟷ (∃s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ s' = s - {a})"
using assms
proof safe
fix s a assume "ksimplex p (Suc n) s" and a: "a ∈ s" and na: "∀x∈s - {a}. x n = p"
then show "ksimplex p n (s - {a})"
proof cases
case (ksimplex base upd)
then interpret kuhn_simplex p "Suc n" base upd "s" .
have "a n < p"
using one_step[of a n p] na ‹a∈s› s_space by (auto simp: less_le)
then have "a = enum 0"
using ‹a ∈ s› na by (subst enum_0_bot) (auto simp: le_less intro!: less[of a _ n])
then have s_eq: "s - {a} = enum ` Suc ` {.. n}"
using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident in_enum_image subset_eq)
then have "enum 1 ∈ s - {a}"
by auto
then have "upd 0 = n"
using ‹a n < p› ‹a = enum 0› na[rule_format, of "enum 1"]
by (auto simp: fun_eq_iff enum_Suc split: if_split_asm)
then have "bij_betw upd (Suc ` {..< n}) {..< n}"
using upd
by (subst notIn_Un_bij_betw3[where b=0])
(auto simp: lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
then have "bij_betw (upd∘Suc) {..<n} {..<n}"
by (rule bij_betw_trans[rotated]) (auto simp: bij_betw_def)
have "a n = p - 1"
using enum_Suc[of 0] na[rule_format, OF ‹enum 1 ∈ s - {a}›] ‹a = enum 0› by (auto simp: ‹upd 0 = n›)
show ?thesis
proof (rule ksimplex.intros, standard)
show "bij_betw (upd∘Suc) {..< n} {..< n}" by fact
show "base(n := p) ∈ {..<n} → {..<p}" "⋀i. n≤i ⟹ (base(n := p)) i = p"
using base base_out by (auto simp: Pi_iff)
have "⋀i. Suc ` {..< i} = {..< Suc i} - {0}"
by (auto simp: image_iff Ball_def) arith
then have upd_Suc: "⋀i. i ≤ n ⟹ (upd∘Suc) ` {..< i} = upd ` {..< Suc i} - {n}"
using ‹upd 0 = n› upd_inj by (auto simp add: image_iff less_Suc_eq_0_disj)
have n_in_upd: "⋀i. n ∈ upd ` {..< Suc i}"
using ‹upd 0 = n› by auto
define f' where "f' i j =
(if j ∈ (upd∘Suc)`{..< i} then Suc ((base(n := p)) j) else (base(n := p)) j)" for i j
{ fix x i
assume i [arith]: "i ≤ n"
with upd_Suc have "(upd ∘ Suc) ` {..<i} = upd ` {..<Suc i} - {n}" .
with ‹a n < p› ‹a = enum 0› ‹upd 0 = n› ‹a n = p - 1›
have "enum (Suc i) x = f' i x"
by (auto simp add: f'_def enum_def) }
then show "s - {a} = f' ` {.. n}"
unfolding s_eq image_comp by (intro image_cong) auto
qed
qed
next
assume "ksimplex p n s'" and *: "∀x∈s'. x n = p"
then show "∃s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ s' = s - {a}"
proof cases
case (ksimplex base upd)
then interpret kuhn_simplex p n base upd s' .
define b where "b = base (n := p - 1)"
define u where "u i = (case i of 0 ⇒ n | Suc i ⇒ upd i)" for i
have "ksimplex p (Suc n) (s' ∪ {b})"
proof (rule ksimplex.intros, standard)
show "b ∈ {..<Suc n} → {..<p}"
using base ‹0 < p› unfolding lessThan_Suc b_def by (auto simp: PiE_iff)
show "⋀i. Suc n ≤ i ⟹ b i = p"
using base_out by (auto simp: b_def)
have "bij_betw u (Suc ` {..< n} ∪ {0}) ({..<n} ∪ {u 0})"
using upd
by (intro notIn_Un_bij_betw) (auto simp: u_def bij_betw_def image_comp comp_def inj_on_def)
then show "bij_betw u {..<Suc n} {..<Suc n}"
by (simp add: u_def lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
define f' where "f' i j = (if j ∈ u`{..< i} then Suc (b j) else b j)" for i j
have u_eq: "⋀i. i ≤ n ⟹ u ` {..< Suc i} = upd ` {..< i} ∪ { n }"
by (auto simp: u_def image_iff upd_inj Ball_def split: nat.split) arith
{ fix x have "x ≤ n ⟹ n ∉ upd ` {..<x}"
using upd_space by (simp add: image_iff neq_iff) }
note n_not_upd = this
have *: "f' ` {.. Suc n} = f' ` (Suc ` {.. n} ∪ {0})"
unfolding atMost_Suc_eq_insert_0 by simp
also have "… = (f' ∘ Suc) ` {.. n} ∪ {b}"
by (auto simp: f'_def)
also have "(f' ∘ Suc) ` {.. n} = s'"
using ‹0 < p› base_out[of n]
unfolding s_eq enum_def[abs_def] f'_def[abs_def] upd_space
by (intro image_cong) (simp_all add: u_eq b_def fun_eq_iff n_not_upd)
finally show "s' ∪ {b} = f' ` {.. Suc n}" ..
qed
moreover have "b ∉ s'"
using * ‹0 < p› by (auto simp: b_def)
ultimately show ?thesis by auto
qed
qed
lemma ksimplex_replace_0:
assumes s: "ksimplex p n s" and a: "a ∈ s"
assumes j: "j < n" and p: "∀x∈s - {a}. x j = 0"
shows "card {s'. ksimplex p n s' ∧ (∃b∈s'. s' - {b} = s - {a})} = 1"
using s
proof cases
case (ksimplex b_s u_s)
{ fix t b assume "ksimplex p n t"
then obtain b_t u_t where "kuhn_simplex p n b_t u_t t"
by (auto elim: ksimplex.cases)
interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t
by intro_locales fact+
assume b: "b ∈ t" "t - {b} = s - {a}"
with a j p s.replace_0[of _ a] t.replace_0[of _ b] have "s = t"
by (intro ksimplex_eq_top[of a b]) auto }
then have "{s'. ksimplex p n s' ∧ (∃b∈s'. s' - {b} = s - {a})} = {s}"
using s ‹a ∈ s› by auto
then show ?thesis
by simp
qed
lemma ksimplex_replace_1:
assumes s: "ksimplex p n s" and a: "a ∈ s"
assumes j: "j < n" and p: "∀x∈s - {a}. x j = p"
shows "card {s'. ksimplex p n s' ∧ (∃b∈s'. s' - {b} = s - {a})} = 1"
using s
proof cases
case (ksimplex b_s u_s)
{ fix t b assume "ksimplex p n t"
then obtain b_t u_t where "kuhn_simplex p n b_t u_t t"
by (auto elim: ksimplex.cases)
interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t
by intro_locales fact+
assume b: "b ∈ t" "t - {b} = s - {a}"
with a j p s.replace_1[of _ a] t.replace_1[of _ b] have "s = t"
by (intro ksimplex_eq_bot[of a b]) auto }
then have "{s'. ksimplex p n s' ∧ (∃b∈s'. s' - {b} = s - {a})} = {s}"
using s ‹a ∈ s› by auto
then show ?thesis
by simp
qed
lemma ksimplex_replace_2:
assumes s: "ksimplex p n s" and "a ∈ s" and "n ≠ 0"
and lb: "∀j<n. ∃x∈s - {a}. x j ≠ 0"
and ub: "∀j<n. ∃x∈s - {a}. x j ≠ p"
shows "card {s'. ksimplex p n s' ∧ (∃b∈s'. s' - {b} = s - {a})} = 2"
using s
proof cases
case (ksimplex base upd)
then interpret kuhn_simplex p n base upd s .
from ‹a ∈ s› obtain i where "i ≤ n" "a = enum i"
unfolding s_eq by auto
from ‹i ≤ n› have "i = 0 ∨ i = n ∨ (0 < i ∧ i < n)"
by linarith
then have "∃!s'. s' ≠ s ∧ ksimplex p n s' ∧ (∃b∈s'. s - {a} = s'- {b})"
proof (elim disjE conjE)
assume "i = 0"
define rot where [abs_def]: "rot i = (if i + 1 = n then 0 else i + 1)" for i
let ?upd = "upd ∘ rot"
have rot: "bij_betw rot {..< n} {..< n}"
by (auto simp: bij_betw_def inj_on_def image_iff Ball_def rot_def)
arith+
from rot upd have "bij_betw ?upd {..<n} {..<n}"
by (rule bij_betw_trans)
define f' where [abs_def]: "f' i j =
(if j ∈ ?upd`{..< i} then Suc (enum (Suc 0) j) else enum (Suc 0) j)" for i j
interpret b: kuhn_simplex p n "enum (Suc 0)" "upd ∘ rot" "f' ` {.. n}"
proof
from ‹a = enum i› ub ‹n ≠ 0› ‹i = 0›
obtain i' where "i' ≤ n" "enum i' ≠ enum 0" "enum i' (upd 0) ≠ p"
unfolding s_eq by (auto intro: upd_space simp: enum_inj)
then have "enum 1 ≤ enum i'" "enum i' (upd 0) < p"
using enum_le_p[of i' "upd 0"] by (auto simp: enum_inj enum_mono upd_space)
then have "enum 1 (upd 0) < p"
by (auto simp: le_fun_def intro: le_less_trans)
then show "enum (Suc 0) ∈ {..<n} → {..<p}"
using base ‹n ≠ 0› by (auto simp: enum_0 enum_Suc PiE_iff extensional_def upd_space)
{ fix i assume "n ≤ i" then show "enum (Suc 0) i = p"
using ‹n ≠ 0› by (auto simp: enum_eq_p) }
show "bij_betw ?upd {..<n} {..<n}" by fact
qed (simp add: f'_def)
have ks_f': "ksimplex p n (f' ` {.. n})"
by rule unfold_locales
have b_enum: "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
with b.inj_enum have inj_f': "inj_on f' {.. n}" by simp
have f'_eq_enum: "f' j = enum (Suc j)" if "j < n" for j
proof -
from that have "rot ` {..< j} = {0 <..< Suc j}"
by (auto simp: rot_def image_Suc_lessThan cong: image_cong_simp)
with that ‹n ≠ 0› show ?thesis
by (simp only: f'_def enum_def fun_eq_iff image_comp [symmetric])
(auto simp add: upd_inj)
qed
then have "enum ` Suc ` {..< n} = f' ` {..< n}"
by (force simp: enum_inj)
also have "Suc ` {..< n} = {.. n} - {0}"
by (auto simp: image_iff Ball_def) arith
also have "{..< n} = {.. n} - {n}"
by auto
finally have eq: "s - {a} = f' ` {.. n} - {f' n}"
unfolding s_eq ‹a = enum i› ‹i = 0›
by (simp add: inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF inj_f'])
have "enum 0 < f' 0"
using ‹n ≠ 0› by (simp add: enum_strict_mono f'_eq_enum)
also have "… < f' n"
using ‹n ≠ 0› b.enum_strict_mono[of 0 n] unfolding b_enum by simp
finally have "a ≠ f' n"
using ‹a = enum i› ‹i = 0› by auto
{ fix t c assume "ksimplex p n t" "c ∈ t" and eq_sma: "s - {a} = t - {c}"
obtain b u where "kuhn_simplex p n b u t"
using ‹ksimplex p n t› by (auto elim: ksimplex.cases)
then interpret t: kuhn_simplex p n b u t .
{ fix x assume "x ∈ s" "x ≠ a"
then have "x (upd 0) = enum (Suc 0) (upd 0)"
by (auto simp: ‹a = enum i› ‹i = 0› s_eq enum_def enum_inj) }
then have eq_upd0: "∀x∈t-{c}. x (upd 0) = enum (Suc 0) (upd 0)"
unfolding eq_sma[symmetric] by auto
then have "c (upd 0) ≠ enum (Suc 0) (upd 0)"
using ‹n ≠ 0› by (intro t.one_step[OF ‹c∈t› ]) (auto simp: upd_space)
then have "c (upd 0) < enum (Suc 0) (upd 0) ∨ c (upd 0) > enum (Suc 0) (upd 0)"
by auto
then have "t = s ∨ t = f' ` {..n}"
proof (elim disjE conjE)
assume *: "c (upd 0) < enum (Suc 0) (upd 0)"
interpret st: kuhn_simplex_pair p n base upd s b u t ..
{ fix x assume "x ∈ t" with * ‹c∈t› eq_upd0[rule_format, of x] have "c ≤ x"
by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) }
note top = this
have "s = t"
using ‹a = enum i› ‹i = 0› ‹c ∈ t›
by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq_sma])
(auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
then show ?thesis by simp
next
assume *: "c (upd 0) > enum (Suc 0) (upd 0)"
interpret st: kuhn_simplex_pair p n "enum (Suc 0)" "upd ∘ rot" "f' ` {.. n}" b u t ..
have eq: "f' ` {..n} - {f' n} = t - {c}"
using eq_sma eq by simp
{ fix x assume "x ∈ t" with * ‹c∈t› eq_upd0[rule_format, of x] have "x ≤ c"
by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) }
note top = this
have "f' ` {..n} = t"
using ‹a = enum i› ‹i = 0› ‹c ∈ t›
by (intro st.ksimplex_eq_top[OF _ _ _ _ eq])
(auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono b_enum[symmetric] top)
then show ?thesis by simp
qed }
with ks_f' eq ‹a ≠ f' n› ‹n ≠ 0› show ?thesis
apply (intro ex1I[of _ "f' ` {.. n}"])
apply auto []
apply metis
done
next
assume "i = n"
from ‹n ≠ 0› obtain n' where n': "n = Suc n'"
by (cases n) auto
define rot where "rot i = (case i of 0 ⇒ n' | Suc i ⇒ i)" for i
let ?upd = "upd ∘ rot"
have rot: "bij_betw rot {..< n} {..< n}"
by (auto simp: bij_betw_def inj_on_def image_iff Bex_def rot_def n' split: nat.splits)
arith
from rot upd have "bij_betw ?upd {..<n} {..<n}"
by (rule bij_betw_trans)
define b where "b = base (upd n' := base (upd n') - 1)"
define f' where [abs_def]: "f' i j = (if j ∈ ?upd`{..< i} then Suc (b j) else b j)" for i j
interpret b: kuhn_simplex p n b "upd ∘ rot" "f' ` {.. n}"
proof
{ fix i assume "n ≤ i" then show "b i = p"
using base_out[of i] upd_space[of n'] by (auto simp: b_def n') }
show "b ∈ {..<n} → {..<p}"
using base ‹n ≠ 0› upd_space[of n']
by (auto simp: b_def PiE_def Pi_iff Ball_def upd_space extensional_def n')
show "bij_betw ?upd {..<n} {..<n}" by fact
qed (simp add: f'_def)
have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
have ks_f': "ksimplex p n (b.enum ` {.. n})"
unfolding f' by rule unfold_locales
have "0 < n"
using ‹n ≠ 0› by auto
{ from ‹a = enum i› ‹n ≠ 0› ‹i = n› lb upd_space[of n']
obtain i' where "i' ≤ n" "enum i' ≠ enum n" "0 < enum i' (upd n')"
unfolding s_eq by (auto simp: enum_inj n')
moreover have "enum i' (upd n') = base (upd n')"
unfolding enum_def using ‹i' ≤ n› ‹enum i' ≠ enum n› by (auto simp: n' upd_inj enum_inj)
ultimately have "0 < base (upd n')"
by auto }
then have benum1: "b.enum (Suc 0) = base"
unfolding b.enum_Suc[OF ‹0<n›] b.enum_0 by (auto simp: b_def rot_def)
have [simp]: "⋀j. Suc j < n ⟹ rot ` {..< Suc j} = {n'} ∪ {..< j}"
by (auto simp: rot_def image_iff Ball_def split: nat.splits)
have rot_simps: "⋀j. rot (Suc j) = j" "rot 0 = n'"
by (simp_all add: rot_def)
{ fix j assume j: "Suc j ≤ n" then have "b.enum (Suc j) = enum j"
by (induct j) (auto simp: benum1 enum_0 b.enum_Suc enum_Suc rot_simps) }
note b_enum_eq_enum = this
then have "enum ` {..< n} = b.enum ` Suc ` {..< n}"
by (auto simp: image_comp intro!: image_cong)
also have "Suc ` {..< n} = {.. n} - {0}"
by (auto simp: image_iff Ball_def) arith
also have "{..< n} = {.. n} - {n}"
by auto
finally have eq: "s - {a} = b.enum ` {.. n} - {b.enum 0}"
unfolding s_eq ‹a = enum i› ‹i = n›
using inj_on_image_set_diff[OF inj_enum Diff_subset, of "{n}"]
inj_on_image_set_diff[OF b.inj_enum Diff_subset, of "{0}"]
by (simp add: comp_def)
have "b.enum 0 ≤ b.enum n"
by (simp add: b.enum_mono)
also have "b.enum n < enum n"
using ‹n ≠ 0› by (simp add: enum_strict_mono b_enum_eq_enum n')
finally have "a ≠ b.enum 0"
using ‹a = enum i› ‹i = n› by auto
{ fix t c assume "ksimplex p n t" "c ∈ t" and eq_sma: "s - {a} = t - {c}"
obtain b' u where "kuhn_simplex p n b' u t"
using ‹ksimplex p n t› by (auto elim: ksimplex.cases)
then interpret t: kuhn_simplex p n b' u t .
{ fix x assume "x ∈ s" "x ≠ a"
then have "x (upd n') = enum n' (upd n')"
by (auto simp: ‹a = enum i› n' ‹i = n› s_eq enum_def enum_inj in_upd_image) }
then have eq_upd0: "∀x∈t-{c}. x (upd n') = enum n' (upd n')"
unfolding eq_sma[symmetric] by auto
then have "c (upd n') ≠ enum n' (upd n')"
using ‹n ≠ 0› by (intro t.one_step[OF ‹c∈t› ]) (auto simp: n' upd_space[unfolded n'])
then have "c (upd n') < enum n' (upd n') ∨ c (upd n') > enum n' (upd n')"
by auto
then have "t = s ∨ t = b.enum ` {..n}"
proof (elim disjE conjE)
assume *: "c (upd n') > enum n' (upd n')"
interpret st: kuhn_simplex_pair p n base upd s b' u t ..
{ fix x assume "x ∈ t" with * ‹c∈t› eq_upd0[rule_format, of x] have "x ≤ c"
by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) }
note top = this
have "s = t"
using ‹a = enum i› ‹i = n› ‹c ∈ t›
by (intro st.ksimplex_eq_top[OF _ _ _ _ eq_sma])
(auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
then show ?thesis by simp
next
assume *: "c (upd n') < enum n' (upd n')"
interpret st: kuhn_simplex_pair p n b "upd ∘ rot" "f' ` {.. n}" b' u t ..
have eq: "f' ` {..n} - {b.enum 0} = t - {c}"
using eq_sma eq f' by simp
{ fix x assume "x ∈ t" with * ‹c∈t› eq_upd0[rule_format, of x] have "c ≤ x"
by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) }
note bot = this
have "f' ` {..n} = t"
using ‹a = enum i› ‹i = n› ‹c ∈ t›
by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq])
(auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono bot)
with f' show ?thesis by simp
qed }
with ks_f' eq ‹a ≠ b.enum 0› ‹n ≠ 0› show ?thesis
apply (intro ex1I[of _ "b.enum ` {.. n}"])
apply fastforce
apply metis
done
next
assume i: "0 < i" "i < n"
define i' where "i' = i - 1"
with i have "Suc i' < n"
by simp
with i have Suc_i': "Suc i' = i"
by (simp add: i'_def)
let ?upd = "Fun.swap i' i upd"
from i upd have "bij_betw ?upd {..< n} {..< n}"
by (subst bij_betw_swap_iff) (auto simp: i'_def)
define f' where [abs_def]: "f' i j = (if j ∈ ?upd`{..< i} then Suc (base j) else base j)"
for i j
interpret b: kuhn_simplex p n base ?upd "f' ` {.. n}"
proof
show "base ∈ {..<n} → {..<p}" by (rule base)
{ fix i assume "n ≤ i" then show "base i = p" by (rule base_out) }
show "bij_betw ?upd {..<n} {..<n}" by fact
qed (simp add: f'_def)
have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
have ks_f': "ksimplex p n (b.enum ` {.. n})"
unfolding f' by rule unfold_locales
have "{i} ⊆ {..n}"
using i by auto
{ fix j assume "j ≤ n"
with i Suc_i' have "enum j = b.enum j ⟷ j ≠ i"
unfolding fun_eq_iff enum_def b.enum_def image_comp [symmetric]
apply (cases ‹i = j›)
apply (metis imageI in_upd_image lessI lessThan_iff lessThan_subset_iff order_less_le transpose_apply_first)
by (metis lessThan_iff linorder_not_less not_less_eq_eq order_less_le transpose_image_eq)
}
note enum_eq_benum = this
then have "enum ` ({.. n} - {i}) = b.enum ` ({.. n} - {i})"
by (intro image_cong) auto
then have eq: "s - {a} = b.enum ` {.. n} - {b.enum i}"
unfolding s_eq ‹a = enum i›
using inj_on_image_set_diff[OF inj_enum Diff_subset ‹{i} ⊆ {..n}›]
inj_on_image_set_diff[OF b.inj_enum Diff_subset ‹{i} ⊆ {..n}›]
by (simp add: comp_def)
have "a ≠ b.enum i"
using ‹a = enum i› enum_eq_benum i by auto
{ fix t c assume "ksimplex p n t" "c ∈ t" and eq_sma: "s - {a} = t - {c}"
obtain b' u where "kuhn_simplex p n b' u t"
using ‹ksimplex p n t› by (auto elim: ksimplex.cases)
then interpret t: kuhn_simplex p n b' u t .
have "enum i' ∈ s - {a}" "enum (i + 1) ∈ s - {a}"
using ‹a = enum i› i enum_in by (auto simp: enum_inj i'_def)
then obtain l k where
l: "t.enum l = enum i'" "l ≤ n" "t.enum l ≠ c" and
k: "t.enum k = enum (i + 1)" "k ≤ n" "t.enum k ≠ c"
unfolding eq_sma by (auto simp: t.s_eq)
with i have "t.enum l < t.enum k"
by (simp add: enum_strict_mono i'_def)
with ‹l ≤ n› ‹k ≤ n› have "l < k"
by (simp add: t.enum_strict_mono)
{ assume "Suc l = k"
have "enum (Suc (Suc i')) = t.enum (Suc l)"
using i by (simp add: k ‹Suc l = k› i'_def)
then have False
using ‹l < k› ‹k ≤ n› ‹Suc i' < n›
by (auto simp: t.enum_Suc enum_Suc l upd_inj fun_eq_iff split: if_split_asm)
(metis Suc_lessD n_not_Suc_n upd_inj) }
with ‹l < k› have "Suc l < k"
by arith
have c_eq: "c = t.enum (Suc l)"
proof (rule ccontr)
assume "c ≠ t.enum (Suc l)"
then have "t.enum (Suc l) ∈ s - {a}"
using ‹l < k› ‹k ≤ n› by (simp add: t.s_eq eq_sma)
then obtain j where "t.enum (Suc l) = enum j" "j ≤ n" "enum j ≠ enum i"
unfolding s_eq ‹a = enum i› by auto
with i have "t.enum (Suc l) ≤ t.enum l ∨ t.enum k ≤ t.enum (Suc l)"
by (auto simp: i'_def enum_mono enum_inj l k)
with ‹Suc l < k› ‹k ≤ n› show False
by (simp add: t.enum_mono)
qed
{ have "t.enum (Suc (Suc l)) ∈ s - {a}"
unfolding eq_sma c_eq t.s_eq using ‹Suc l < k› ‹k ≤ n› by (auto simp: t.enum_inj)
then obtain j where eq: "t.enum (Suc (Suc l)) = enum j" and "j ≤ n" "j ≠ i"
by (auto simp: s_eq ‹a = enum i›)
moreover have "enum i' < t.enum (Suc (Suc l))"
unfolding l(1)[symmetric] using ‹Suc l < k› ‹k ≤ n› by (auto simp: t.enum_strict_mono)
ultimately have "i' < j"
using i by (simp add: enum_strict_mono i'_def)
with ‹j ≠ i› ‹j ≤ n› have "t.enum k ≤ t.enum (Suc (Suc l))"
unfolding i'_def by (simp add: enum_mono k eq)
then have "k ≤ Suc (Suc l)"
using ‹k ≤ n› ‹Suc l < k› by (simp add: t.enum_mono) }
with ‹Suc l < k› have "Suc (Suc l) = k" by simp
then have "enum (Suc (Suc i')) = t.enum (Suc (Suc l))"
using i by (simp add: k i'_def)
also have "… = (enum i') (u l := Suc (enum i' (u l)), u (Suc l) := Suc (enum i' (u (Suc l))))"
using ‹Suc l < k› ‹k ≤ n› by (simp add: t.enum_Suc l t.upd_inj)
finally have "(u l = upd i' ∧ u (Suc l) = upd (Suc i')) ∨
(u l = upd (Suc i') ∧ u (Suc l) = upd i')"
using ‹Suc i' < n› by (auto simp: enum_Suc fun_eq_iff split: if_split_asm)
then have "t = s ∨ t = b.enum ` {..n}"
proof (elim disjE conjE)
assume u: "u l = upd i'"
have "c = t.enum (Suc l)" unfolding c_eq ..
also have "t.enum (Suc l) = enum (Suc i')"
using u ‹l < k› ‹k ≤ n› ‹Suc i' < n› by (simp add: enum_Suc t.enum_Suc l)
also have "… = a"
using ‹a = enum i› i by (simp add: i'_def)
finally show ?thesis
using eq_sma ‹a ∈ s› ‹c ∈ t› by auto
next
assume u: "u l = upd (Suc i')"
define B where "B = b.enum ` {..n}"
have "b.enum i' = enum i'"
using enum_eq_benum[of i'] i by (auto simp: i'_def gr0_conv_Suc)
have "c = t.enum (Suc l)" unfolding c_eq ..
also have "t.enum (Suc l) = b.enum (Suc i')"
using u ‹l < k› ‹k ≤ n› ‹Suc i' < n›
by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc ‹b.enum i' = enum i'›)
(simp add: Suc_i')
also have "… = b.enum i"
using i by (simp add: i'_def)
finally have "c = b.enum i" .
then have "t - {c} = B - {c}" "c ∈ B"
unfolding eq_sma[symmetric] eq B_def using i by auto
with ‹c ∈ t› have "t = B"
by auto
then show ?thesis
by (simp add: B_def)
qed }
with ks_f' eq ‹a ≠ b.enum i› ‹n ≠ 0› ‹i ≤ n› show ?thesis
apply (intro ex1I[of _ "b.enum ` {.. n}"])
apply auto []
apply metis
done
qed
then show ?thesis
using s ‹a ∈ s› by (simp add: card_2_iff' Ex1_def) metis
qed
text ‹Hence another step towards concreteness.›
lemma kuhn_simplex_lemma:
assumes "∀s. ksimplex p (Suc n) s ⟶ rl ` s ⊆ {.. Suc n}"
and "odd (card {f. ∃s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ (f = s - {a}) ∧
rl ` f = {..n} ∧ ((∃j≤n. ∀x∈f. x j = 0) ∨ (∃j≤n. ∀x∈f. x j = p))})"
shows "odd (card {s. ksimplex p (Suc<