Theory Limits

(*  Title:      HOL/Limits.thy
    Author:     Brian Huffman
    Author:     Jacques D. Fleuriot, University of Cambridge
    Author:     Lawrence C Paulson
    Author:     Jeremy Avigad
*)

section ‹Limits on Real Vector Spaces›

theory Limits
  imports Real_Vector_Spaces
begin

lemma range_mult [simp]:
  fixes a::"real" shows "range ((*) a) = (if a=0 then {0} else UNIV)"
  by (simp add: surj_def) (meson dvdE dvd_field_iff)


subsection ‹Filter going to infinity norm›

definition at_infinity :: "'a::real_normed_vector filter"
  where "at_infinity = (INF r. principal {x. r  norm x})"

lemma eventually_at_infinity: "eventually P at_infinity  (b. x. b  norm x  P x)"
  unfolding at_infinity_def
  by (subst eventually_INF_base)
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])

corollary eventually_at_infinity_pos:
  "eventually p at_infinity  (b. 0 < b  (x. norm x  b  p x))"
  unfolding eventually_at_infinity
  by (meson le_less_trans norm_ge_zero not_le zero_less_one)

lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot"
proof -
  have 1: "nu. A n; nv. A n
        b. x. b  ¦x¦  A x" for A and u v::real
    by (rule_tac x="max (- v) u" in exI) (auto simp: abs_real_def)
  have 2: "x. u  ¦x¦  A x  N. nN. A n" for A and u::real
    by (meson abs_less_iff le_cases less_le_not_le)
  have 3: "x. u  ¦x¦  A x  N. nN. A n" for A and u::real
    by (metis (full_types) abs_ge_self abs_minus_cancel le_minus_iff order_trans)
  show ?thesis
    by (auto simp: filter_eq_iff eventually_sup eventually_at_infinity
      eventually_at_top_linorder eventually_at_bot_linorder intro: 1 2 3)
qed

lemma at_top_le_at_infinity: "at_top  (at_infinity :: real filter)"
  unfolding at_infinity_eq_at_top_bot by simp

lemma at_bot_le_at_infinity: "at_bot  (at_infinity :: real filter)"
  unfolding at_infinity_eq_at_top_bot by simp

lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F  filterlim f at_infinity F"
  for f :: "_  real"
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])

lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially"
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially)

lemma lim_infinity_imp_sequentially: "(f  l) at_infinity  ((λn. f(n))  l) sequentially"
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)


subsubsection ‹Boundedness›

definition Bfun :: "('a  'b::metric_space)  'a filter  bool"
  where Bfun_metric_def: "Bfun f F = (y. K>0. eventually (λx. dist (f x) y  K) F)"

abbreviation Bseq :: "(nat  'a::metric_space)  bool"
  where "Bseq X  Bfun X sequentially"

lemma Bseq_conv_Bfun: "Bseq X  Bfun X sequentially" ..

lemma Bseq_ignore_initial_segment: "Bseq X  Bseq (λn. X (n + k))"
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)

lemma Bseq_offset: "Bseq (λn. X (n + k))  Bseq X"
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)

lemma Bfun_def: "Bfun f F  (K>0. eventually (λx. norm (f x)  K) F)"
  unfolding Bfun_metric_def norm_conv_dist
proof safe
  fix y K
  assume K: "0 < K" and *: "eventually (λx. dist (f x) y  K) F"
  moreover have "eventually (λx. dist (f x) 0  dist (f x) y + dist 0 y) F"
    by (intro always_eventually) (metis dist_commute dist_triangle)
  with * have "eventually (λx. dist (f x) 0  K + dist 0 y) F"
    by eventually_elim auto
  with 0 < K show "K>0. eventually (λx. dist (f x) 0  K) F"
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
qed (force simp del: norm_conv_dist [symmetric])

lemma BfunI:
  assumes K: "eventually (λx. norm (f x)  K) F"
  shows "Bfun f F"
  unfolding Bfun_def
proof (intro exI conjI allI)
  show "0 < max K 1" by simp
  show "eventually (λx. norm (f x)  max K 1) F"
    using K by (rule eventually_mono) simp
qed

lemma BfunE:
  assumes "Bfun f F"
  obtains B where "0 < B" and "eventually (λx. norm (f x)  B) F"
  using assms unfolding Bfun_def by blast

lemma Cauchy_Bseq:
  assumes "Cauchy X" shows "Bseq X"
proof -
  have "y K. 0 < K  (N. nN. dist (X n) y  K)"
    if "m n. m  M; n  M  dist (X m) (X n) < 1" for M
    by (meson order.order_iff_strict that zero_less_one)
  with assms show ?thesis
    by (force simp: Cauchy_def Bfun_metric_def eventually_sequentially)
qed

subsubsection ‹Bounded Sequences›

lemma BseqI': "(n. norm (X n)  K)  Bseq X"
  by (intro BfunI) (auto simp: eventually_sequentially)

lemma Bseq_def: "Bseq X  (K>0. n. norm (X n)  K)"
  unfolding Bfun_def eventually_sequentially
proof safe
  fix N K
  assume "0 < K" "nN. norm (X n)  K"
  then show "K>0. n. norm (X n)  K"
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
qed auto

lemma BseqE: "Bseq X  (K. 0 < K  n. norm (X n)  K  Q)  Q"
  unfolding Bseq_def by auto

lemma BseqD: "Bseq X  K. 0 < K  (n. norm (X n)  K)"
  by (simp add: Bseq_def)

lemma BseqI: "0 < K  n. norm (X n)  K  Bseq X"
  by (auto simp: Bseq_def)

lemma Bseq_bdd_above: "Bseq X  bdd_above (range X)"
  for X :: "nat  real"
proof (elim BseqE, intro bdd_aboveI2)
  fix K n
  assume "0 < K" "n. norm (X n)  K"
  then show "X n  K"
    by (auto elim!: allE[of _ n])
qed

lemma Bseq_bdd_above': "Bseq X  bdd_above (range (λn. norm (X n)))"
  for X :: "nat  'a :: real_normed_vector"
proof (elim BseqE, intro bdd_aboveI2)
  fix K n
  assume "0 < K" "n. norm (X n)  K"
  then show "norm (X n)  K"
    by (auto elim!: allE[of _ n])
qed

lemma Bseq_bdd_below: "Bseq X  bdd_below (range X)"
  for X :: "nat  real"
proof (elim BseqE, intro bdd_belowI2)
  fix K n
  assume "0 < K" "n. norm (X n)  K"
  then show "- K  X n"
    by (auto elim!: allE[of _ n])
qed

lemma Bseq_eventually_mono:
  assumes "eventually (λn. norm (f n)  norm (g n)) sequentially" "Bseq g"
  shows "Bseq f"
proof -
  from assms(2) obtain K where "0 < K" and "eventually (λn. norm (g n)  K) sequentially"
    unfolding Bfun_def by fast
  with assms(1) have "eventually (λn. norm (f n)  K) sequentially"
    by (fast elim: eventually_elim2 order_trans)
  with 0 < K show "Bseq f"
    unfolding Bfun_def by fast
qed

lemma lemma_NBseq_def: "(K > 0. n. norm (X n)  K)  (N. n. norm (X n)  real(Suc N))"
proof safe
  fix K :: real
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
  then have "K  real (Suc n)" by auto
  moreover assume "m. norm (X m)  K"
  ultimately have "m. norm (X m)  real (Suc n)"
    by (blast intro: order_trans)
  then show "N. n. norm (X n)  real (Suc N)" ..
next
  show "N. n. norm (X n)  real (Suc N)  K>0. n. norm (X n)  K"
    using of_nat_0_less_iff by blast
qed

text ‹Alternative definition for Bseq›.›
lemma Bseq_iff: "Bseq X  (N. n. norm (X n)  real(Suc N))"
  by (simp add: Bseq_def) (simp add: lemma_NBseq_def)

lemma lemma_NBseq_def2: "(K > 0. n. norm (X n)  K) = (N. n. norm (X n) < real(Suc N))"
proof -
  have *: "N. n. norm (X n)  1 + real N 
         N. n. norm (X n) < 1 + real N"
    by (metis add.commute le_less_trans less_add_one of_nat_Suc)
  then show ?thesis
    unfolding lemma_NBseq_def
    by (metis less_le_not_le not_less_iff_gr_or_eq of_nat_Suc)
qed

text ‹Yet another definition for Bseq.›
lemma Bseq_iff1a: "Bseq X  (N. n. norm (X n) < real (Suc N))"
  by (simp add: Bseq_def lemma_NBseq_def2)

subsubsection ‹A Few More Equivalence Theorems for Boundedness›

text ‹Alternative formulation for boundedness.›
lemma Bseq_iff2: "Bseq X  (k > 0. x. n. norm (X n + - x)  k)"
  by (metis BseqE BseqI' add.commute add_cancel_right_left add_uminus_conv_diff norm_add_leD
            norm_minus_cancel norm_minus_commute)

text ‹Alternative formulation for boundedness.›
lemma Bseq_iff3: "Bseq X  (k>0. N. n. norm (X n + - X N)  k)"
  (is "?P  ?Q")
proof
  assume ?P
  then obtain K where *: "0 < K" and **: "n. norm (X n)  K"
    by (auto simp: Bseq_def)
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
  from ** have "n. norm (X n - X 0)  K + norm (X 0)"
    by (auto intro: order_trans norm_triangle_ineq4)
  then have "n. norm (X n + - X 0)  K + norm (X 0)"
    by simp
  with 0 < K + norm (X 0) show ?Q by blast
next
  assume ?Q
  then show ?P by (auto simp: Bseq_iff2)
qed


subsubsection ‹Upper Bounds and Lubs of Bounded Sequences›

lemma Bseq_minus_iff: "Bseq (λn. - (X n) :: 'a::real_normed_vector)  Bseq X"
  by (simp add: Bseq_def)

lemma Bseq_add:
  fixes f :: "nat  'a::real_normed_vector"
  assumes "Bseq f"
  shows "Bseq (λx. f x + c)"
proof -
  from assms obtain K where K: "x. norm (f x)  K"
    unfolding Bseq_def by blast
  {
    fix x :: nat
    have "norm (f x + c)  norm (f x) + norm c" by (rule norm_triangle_ineq)
    also have "norm (f x)  K" by (rule K)
    finally have "norm (f x + c)  K + norm c" by simp
  }
  then show ?thesis by (rule BseqI')
qed

lemma Bseq_add_iff: "Bseq (λx. f x + c)  Bseq f"
  for f :: "nat  'a::real_normed_vector"
  using Bseq_add[of f c] Bseq_add[of "λx. f x + c" "-c"] by auto

lemma Bseq_mult:
  fixes f g :: "nat  'a::real_normed_field"
  assumes "Bseq f" and "Bseq g"
  shows "Bseq (λx. f x * g x)"
proof -
  from assms obtain K1 K2 where K: "norm (f x)  K1" "K1 > 0" "norm (g x)  K2" "K2 > 0"
    for x
    unfolding Bseq_def by blast
  then have "norm (f x * g x)  K1 * K2" for x
    by (auto simp: norm_mult intro!: mult_mono)
  then show ?thesis by (rule BseqI')
qed

lemma Bfun_const [simp]: "Bfun (λ_. c) F"
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])

lemma Bseq_cmult_iff:
  fixes c :: "'a::real_normed_field"
  assumes "c  0"
  shows "Bseq (λx. c * f x)  Bseq f"
proof
  assume "Bseq (λx. c * f x)"
  with Bfun_const have "Bseq (λx. inverse c * (c * f x))"
    by (rule Bseq_mult)
  with c  0 show "Bseq f"
    by (simp add: field_split_simps)
qed (intro Bseq_mult Bfun_const)

lemma Bseq_subseq: "Bseq f  Bseq (λx. f (g x))"
  for f :: "nat  'a::real_normed_vector"
  unfolding Bseq_def by auto

lemma Bseq_Suc_iff: "Bseq (λn. f (Suc n))  Bseq f"
  for f :: "nat  'a::real_normed_vector"
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)

lemma increasing_Bseq_subseq_iff:
  assumes "x y. x  y  norm (f x :: 'a::real_normed_vector)  norm (f y)" "strict_mono g"
  shows "Bseq (λx. f (g x))  Bseq f"
proof
  assume "Bseq (λx. f (g x))"
  then obtain K where K: "x. norm (f (g x))  K"
    unfolding Bseq_def by auto
  {
    fix x :: nat
    from filterlim_subseq[OF assms(2)] obtain y where "g y  x"
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
    then have "norm (f x)  norm (f (g y))"
      using assms(1) by blast
    also have "norm (f (g y))  K" by (rule K)
    finally have "norm (f x)  K" .
  }
  then show "Bseq f" by (rule BseqI')
qed (use Bseq_subseq[of f g] in simp_all)

lemma nonneg_incseq_Bseq_subseq_iff:
  fixes f :: "nat  real"
    and g :: "nat  nat"
  assumes "x. f x  0" "incseq f" "strict_mono g"
  shows "Bseq (λx. f (g x))  Bseq f"
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)

lemma Bseq_eq_bounded: "range f  {a..b}  Bseq f"
  for a b :: real
proof (rule BseqI'[where K="max (norm a) (norm b)"])
  fix n assume "range f  {a..b}"
  then have "f n  {a..b}"
    by blast
  then show "norm (f n)  max (norm a) (norm b)"
    by auto
qed

lemma incseq_bounded: "incseq X  i. X i  B  Bseq X"
  for B :: real
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)

lemma decseq_bounded: "decseq X  i. B  X i  Bseq X"
  for B :: real
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)


subsubsectiontag unimportant› ‹Polynomal function extremal theorem, from HOL Light›

lemma polyfun_extremal_lemma: 
    fixes c :: "nat  'a::real_normed_div_algebra"
  assumes "0 < e"
    shows "M. z. M  norm(z)  norm (in. c(i) * z^i)  e * norm(z) ^ (Suc n)"
proof (induct n)
  case 0 with assms
  show ?case
    apply (rule_tac x="norm (c 0) / e" in exI)
    apply (auto simp: field_simps)
    done
next
  case (Suc n)
  obtain M where M: "z. M  norm z  norm (in. c i * z^i)  e * norm z ^ Suc n"
    using Suc assms by blast
  show ?case
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
    fix z::'a
    assume z1: "M  norm z" and "1 + norm (c (Suc n)) / e  norm z"
    then have z2: "e + norm (c (Suc n))  e * norm z"
      using assms by (simp add: field_simps)
    have "norm (in. c i * z^i)  e * norm z ^ Suc n"
      using M [OF z1] by simp
    then have "norm (in. c i * z^i) + norm (c (Suc n) * z ^ Suc n)  e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
      by simp
    then have "norm ((in. c i * z^i) + c (Suc n) * z ^ Suc n)  e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
      by (blast intro: norm_triangle_le elim: )
    also have "...  (e + norm (c (Suc n))) * norm z ^ Suc n"
      by (simp add: norm_power norm_mult algebra_simps)
    also have "...  (e * norm z) * norm z ^ Suc n"
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
    finally show "norm ((in. c i * z^i) + c (Suc n) * z ^ Suc n)  e * norm z ^ Suc (Suc n)"
      by simp
  qed
qed

lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
    fixes c :: "nat  'a::real_normed_div_algebra"
  assumes k: "c k  0" "1k" and kn: "kn"
    shows "eventually (λz. norm (in. c(i) * z^i)  B) at_infinity"
using kn
proof (induction n)
  case 0
  then show ?case
    using k by simp
next
  case (Suc m)
  show ?case
  proof (cases "c (Suc m) = 0")
    case True
    then show ?thesis using Suc k
      by auto (metis antisym_conv less_eq_Suc_le not_le)
  next
    case False
    then obtain M where M:
          "z. M  norm z  norm (im. c i * z^i)  norm (c (Suc m)) / 2 * norm z ^ Suc m"
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
      by auto
    have "b. z. b  norm z  B  norm (iSuc m. c i * z^i)"
    proof (rule exI [where x="max M (max 1 (¦B¦ / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
      fix z::'a
      assume z1: "M  norm z" "1  norm z"
         and "¦B¦ * 2 / norm (c (Suc m))  norm z"
      then have z2: "¦B¦  norm (c (Suc m)) * norm z / 2"
        using False by (simp add: field_simps)
      have nz: "norm z  norm z ^ Suc m"
        by (metis 1  norm z One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
      have *: "y x. norm (c (Suc m)) * norm z / 2  norm y - norm x  B  norm (x + y)"
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
      have "norm z * norm (c (Suc m)) + 2 * norm (im. c i * z^i)
             norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
        using M [of z] Suc z1  by auto
      also have "...  2 * (norm (c (Suc m)) * norm z ^ Suc m)"
        using nz by (simp add: mult_mono del: power_Suc)
      finally show "B  norm ((im. c i * z^i) + c (Suc m) * z ^ Suc m)"
        using Suc.IH
        apply (auto simp: eventually_at_infinity)
        apply (rule *)
        apply (simp add: field_simps norm_mult norm_power)
        done
    qed
    then show ?thesis
      by (simp add: eventually_at_infinity)
  qed
qed

subsection ‹Convergence to Zero›

definition Zfun :: "('a  'b::real_normed_vector)  'a filter  bool"
  where "Zfun f F = (r>0. eventually (λx. norm (f x) < r) F)"

lemma ZfunI: "(r. 0 < r  eventually (λx. norm (f x) < r) F)  Zfun f F"
  by (simp add: Zfun_def)

lemma ZfunD: "Zfun f F  0 < r  eventually (λx. norm (f x) < r) F"
  by (simp add: Zfun_def)

lemma Zfun_ssubst: "eventually (λx. f x = g x) F  Zfun g F  Zfun f F"
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)

lemma Zfun_zero: "Zfun (λx. 0) F"
  unfolding Zfun_def by simp

lemma Zfun_norm_iff: "Zfun (λx. norm (f x)) F = Zfun (λx. f x) F"
  unfolding Zfun_def by simp

lemma Zfun_imp_Zfun:
  assumes f: "Zfun f F"
    and g: "eventually (λx. norm (g x)  norm (f x) * K) F"
  shows "Zfun (λx. g x) F"
proof (cases "0 < K")
  case K: True
  show ?thesis
  proof (rule ZfunI)
    fix r :: real
    assume "0 < r"
    then have "0 < r / K" using K by simp
    then have "eventually (λx. norm (f x) < r / K) F"
      using ZfunD [OF f] by blast
    with g show "eventually (λx. norm (g x) < r) F"
    proof eventually_elim
      case (elim x)
      then have "norm (f x) * K < r"
        by (simp add: pos_less_divide_eq K)
      then show ?case
        by (simp add: order_le_less_trans [OF elim(1)])
    qed
  qed
next
  case False
  then have K: "K  0" by (simp only: not_less)
  show ?thesis
  proof (rule ZfunI)
    fix r :: real
    assume "0 < r"
    from g show "eventually (λx. norm (g x) < r) F"
    proof eventually_elim
      case (elim x)
      also have "norm (f x) * K  norm (f x) * 0"
        using K norm_ge_zero by (rule mult_left_mono)
      finally show ?case
        using 0 < r by simp
    qed
  qed
qed

lemma Zfun_le: "Zfun g F  x. norm (f x)  norm (g x)  Zfun f F"
  by (erule Zfun_imp_Zfun [where K = 1]) simp

lemma Zfun_add:
  assumes f: "Zfun f F"
    and g: "Zfun g F"
  shows "Zfun (λx. f x + g x) F"
proof (rule ZfunI)
  fix r :: real
  assume "0 < r"
  then have r: "0 < r / 2" by simp
  have "eventually (λx. norm (f x) < r/2) F"
    using f r by (rule ZfunD)
  moreover
  have "eventually (λx. norm (g x) < r/2) F"
    using g r by (rule ZfunD)
  ultimately
  show "eventually (λx. norm (f x + g x) < r) F"
  proof eventually_elim
    case (elim x)
    have "norm (f x + g x)  norm (f x) + norm (g x)"
      by (rule norm_triangle_ineq)
    also have " < r/2 + r/2"
      using elim by (rule add_strict_mono)
    finally show ?case
      by simp
  qed
qed

lemma Zfun_minus: "Zfun f F  Zfun (λx. - f x) F"
  unfolding Zfun_def by simp

lemma Zfun_diff: "Zfun f F  Zfun g F  Zfun (λx. f x - g x) F"
  using Zfun_add [of f F "λx. - g x"] by (simp add: Zfun_minus)

lemma (in bounded_linear) Zfun:
  assumes g: "Zfun g F"
  shows "Zfun (λx. f (g x)) F"
proof -
  obtain K where "norm (f x)  norm x * K" for x
    using bounded by blast
  then have "eventually (λx. norm (f (g x))  norm (g x) * K) F"
    by simp
  with g show ?thesis
    by (rule Zfun_imp_Zfun)
qed

lemma (in bounded_bilinear) Zfun:
  assumes f: "Zfun f F"
    and g: "Zfun g F"
  shows "Zfun (λx. f x ** g x) F"
proof (rule ZfunI)
  fix r :: real
  assume r: "0 < r"
  obtain K where K: "0 < K"
    and norm_le: "norm (x ** y)  norm x * norm y * K" for x y
    using pos_bounded by blast
  from K have K': "0 < inverse K"
    by (rule positive_imp_inverse_positive)
  have "eventually (λx. norm (f x) < r) F"
    using f r by (rule ZfunD)
  moreover
  have "eventually (λx. norm (g x) < inverse K) F"
    using g K' by (rule ZfunD)
  ultimately
  show "eventually (λx. norm (f x ** g x) < r) F"
  proof eventually_elim
    case (elim x)
    have "norm (f x ** g x)  norm (f x) * norm (g x) * K"
      by (rule norm_le)
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
    also from K have "r * inverse K * K = r"
      by simp
    finally show ?case .
  qed
qed

lemma (in bounded_bilinear) Zfun_left: "Zfun f F  Zfun (λx. f x ** a) F"
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])

lemma (in bounded_bilinear) Zfun_right: "Zfun f F  Zfun (λx. a ** f x) F"
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])

lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]

lemma tendsto_Zfun_iff: "(f  a) F = Zfun (λx. f x - a) F"
  by (simp only: tendsto_iff Zfun_def dist_norm)

lemma tendsto_0_le:
  "(f  0) F  eventually (λx. norm (g x)  norm (f x) * K) F  (g  0) F"
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)


subsubsection ‹Distance and norms›

lemma tendsto_dist [tendsto_intros]:
  fixes l m :: "'a::metric_space"
  assumes f: "(f  l) F"
    and g: "(g  m) F"
  shows "((λx. dist (f x) (g x))  dist l m) F"
proof (rule tendstoI)
  fix e :: real
  assume "0 < e"
  then have e2: "0 < e/2" by simp
  from tendstoD [OF f e2] tendstoD [OF g e2]
  show "eventually (λx. dist (dist (f x) (g x)) (dist l m) < e) F"
  proof (eventually_elim)
    case (elim x)
    then show "dist (dist (f x) (g x)) (dist l m) < e"
      unfolding dist_real_def
      using dist_triangle2 [of "f x" "g x" "l"]
        and dist_triangle2 [of "g x" "l" "m"]
        and dist_triangle3 [of "l" "m" "f x"]
        and dist_triangle [of "f x" "m" "g x"]
      by arith
  qed
qed

lemma continuous_dist[continuous_intros]:
  fixes f g :: "_  'a :: metric_space"
  shows "continuous F f  continuous F g  continuous F (λx. dist (f x) (g x))"
  unfolding continuous_def by (rule tendsto_dist)

lemma continuous_on_dist[continuous_intros]:
  fixes f g :: "_  'a :: metric_space"
  shows "continuous_on s f  continuous_on s g  continuous_on s (λx. dist (f x) (g x))"
  unfolding continuous_on_def by (auto intro: tendsto_dist)

lemma continuous_at_dist: "isCont (dist a) b"
  using continuous_on_dist [OF continuous_on_const continuous_on_id] continuous_on_eq_continuous_within by blast

lemma tendsto_norm [tendsto_intros]: "(f  a) F  ((λx. norm (f x))  norm a) F"
  unfolding norm_conv_dist by (intro tendsto_intros)

lemma continuous_norm [continuous_intros]: "continuous F f  continuous F (λx. norm (f x))"
  unfolding continuous_def by (rule tendsto_norm)

lemma continuous_on_norm [continuous_intros]:
  "continuous_on s f  continuous_on s (λx. norm (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_norm)

lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
  by (intro continuous_on_id continuous_on_norm)

lemma tendsto_norm_zero: "(f  0) F  ((λx. norm (f x))  0) F"
  by (drule tendsto_norm) simp

lemma tendsto_norm_zero_cancel: "((λx. norm (f x))  0) F  (f  0) F"
  unfolding tendsto_iff dist_norm by simp

lemma tendsto_norm_zero_iff: "((λx. norm (f x))  0) F  (f  0) F"
  unfolding tendsto_iff dist_norm by simp

lemma tendsto_rabs [tendsto_intros]: "(f  l) F  ((λx. ¦f x¦)  ¦l¦) F"
  for l :: real
  by (fold real_norm_def) (rule tendsto_norm)

lemma continuous_rabs [continuous_intros]:
  "continuous F f  continuous F (λx. ¦f x :: real¦)"
  unfolding real_norm_def[symmetric] by (rule continuous_norm)

lemma continuous_on_rabs [continuous_intros]:
  "continuous_on s f  continuous_on s (λx. ¦f x :: real¦)"
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)

lemma tendsto_rabs_zero: "(f  (0::real)) F  ((λx. ¦f x¦)  0) F"
  by (fold real_norm_def) (rule tendsto_norm_zero)

lemma tendsto_rabs_zero_cancel: "((λx. ¦f x¦)  (0::real)) F  (f  0) F"
  by (fold real_norm_def) (rule tendsto_norm_zero_cancel)

lemma tendsto_rabs_zero_iff: "((λx. ¦f x¦)  (0::real)) F  (f  0) F"
  by (fold real_norm_def) (rule tendsto_norm_zero_iff)


subsection ‹Topological Monoid›

class topological_monoid_add = topological_space + monoid_add +
  assumes tendsto_add_Pair: "LIM x (nhds a ×F nhds b). fst x + snd x :> nhds (a + b)"

class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add

lemma tendsto_add [tendsto_intros]:
  fixes a b :: "'a::topological_monoid_add"
  shows "(f  a) F  (g  b) F  ((λx. f x + g x)  a + b) F"
  using filterlim_compose[OF tendsto_add_Pair, of "λx. (f x, g x)" a b F]
  by (simp add: nhds_prod[symmetric] tendsto_Pair)

lemma continuous_add [continuous_intros]:
  fixes f g :: "_  'b::topological_monoid_add"
  shows "continuous F f  continuous F g  continuous F (λx. f x + g x)"
  unfolding continuous_def by (rule tendsto_add)

lemma continuous_on_add [continuous_intros]:
  fixes f g :: "_  'b::topological_monoid_add"
  shows "continuous_on s f  continuous_on s g  continuous_on s (λx. f x + g x)"
  unfolding continuous_on_def by (auto intro: tendsto_add)

lemma tendsto_add_zero:
  fixes f g :: "_  'b::topological_monoid_add"
  shows "(f  0) F  (g  0) F  ((λx. f x + g x)  0) F"
  by (drule (1) tendsto_add) simp

lemma tendsto_sum [tendsto_intros]:
  fixes f :: "'a  'b  'c::topological_comm_monoid_add"
  shows "(i. i  I  (f i  a i) F)  ((λx. iI. f i x)  (iI. a i)) F"
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add)

lemma tendsto_null_sum:
  fixes f :: "'a  'b  'c::topological_comm_monoid_add"
  assumes "i. i  I  ((λx. f x i)  0) F"
  shows "((λi. sum (f i) I)  0) F"
  using tendsto_sum [of I "λx y. f y x" "λx. 0"] assms by simp

lemma continuous_sum [continuous_intros]:
  fixes f :: "'a  'b::t2_space  'c::topological_comm_monoid_add"
  shows "(i. i  I  continuous F (f i))  continuous F (λx. iI. f i x)"
  unfolding continuous_def by (rule tendsto_sum)

lemma continuous_on_sum [continuous_intros]:
  fixes f :: "'a  'b::topological_space  'c::topological_comm_monoid_add"
  shows "(i. i  I  continuous_on S (f i))  continuous_on S (λx. iI. f i x)"
  unfolding continuous_on_def by (auto intro: tendsto_sum)

instance nat :: topological_comm_monoid_add
  by standard
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)

instance int :: topological_comm_monoid_add
  by standard
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)


subsubsection ‹Topological group›

class topological_group_add = topological_monoid_add + group_add +
  assumes tendsto_uminus_nhds: "(uminus  - a) (nhds a)"
begin

lemma tendsto_minus [tendsto_intros]: "(f  a) F  ((λx. - f x)  - a) F"
  by (rule filterlim_compose[OF tendsto_uminus_nhds])

end

class topological_ab_group_add = topological_group_add + ab_group_add

instance topological_ab_group_add < topological_comm_monoid_add ..

lemma continuous_minus [continuous_intros]: "continuous F f  continuous F (λx. - f x)"
  for f :: "'a::t2_space  'b::topological_group_add"
  unfolding continuous_def by (rule tendsto_minus)

lemma continuous_on_minus [continuous_intros]: "continuous_on s f  continuous_on s (λx. - f x)"
  for f :: "_  'b::topological_group_add"
  unfolding continuous_on_def by (auto intro: tendsto_minus)

lemma tendsto_minus_cancel: "((λx. - f x)  - a) F  (f  a) F"
  for a :: "'a::topological_group_add"
  by (drule tendsto_minus) simp

lemma tendsto_minus_cancel_left:
  "(f  - (y::_::topological_group_add)) F  ((λx. - f x)  y) F"
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
  by auto

lemma tendsto_diff [tendsto_intros]:
  fixes a b :: "'a::topological_group_add"
  shows "(f  a) F  (g  b) F  ((λx. f x - g x)  a - b) F"
  using tendsto_add [of f a F "λx. - g x" "- b"] by (simp add: tendsto_minus)

lemma continuous_diff [continuous_intros]:
  fixes f g :: "'a::t2_space  'b::topological_group_add"
  shows "continuous F f  continuous F g  continuous F (λx. f x - g x)"
  unfolding continuous_def by (rule tendsto_diff)

lemma continuous_on_diff [continuous_intros]:
  fixes f g :: "_  'b::topological_group_add"
  shows "continuous_on s f  continuous_on s g  continuous_on s (λx. f x - g x)"
  unfolding continuous_on_def by (auto intro: tendsto_diff)

lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)"
  by (rule continuous_intros | simp)+

instance real_normed_vector < topological_ab_group_add
proof
  fix a b :: 'a
  show "((λx. fst x + snd x)  a + b) (nhds a ×F nhds b)"
    unfolding tendsto_Zfun_iff add_diff_add
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
    by (intro Zfun_add)
       (auto simp: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
  show "(uminus  - a) (nhds a)"
    unfolding tendsto_Zfun_iff minus_diff_minus
    using filterlim_ident[of "nhds a"]
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
qed

lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real]


subsubsection ‹Linear operators and multiplication›

lemma linear_times [simp]: "linear (λx. c * x)"
  for c :: "'a::real_algebra"
  by (auto simp: linearI distrib_left)

lemma (in bounded_linear) tendsto: "(g  a) F  ((λx. f (g x))  f a) F"
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)

lemma (in bounded_linear) continuous: "continuous F g  continuous F (λx. f (g x))"
  using tendsto[of g _ F] by (auto simp: continuous_def)

lemma (in bounded_linear) continuous_on: "continuous_on s g  continuous_on s (λx. f (g x))"
  using tendsto[of g] by (auto simp: continuous_on_def)

lemma (in bounded_linear) tendsto_zero: "(g  0) F  ((λx. f (g x))  0) F"
  by (drule tendsto) (simp only: zero)

lemma (in bounded_bilinear) tendsto:
  "(f  a) F  (g  b) F  ((λx. f x ** g x)  a ** b) F"
  by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right)

lemma (in bounded_bilinear) continuous:
  "continuous F f  continuous F g  continuous F (λx. f x ** g x)"
  using tendsto[of f _ F g] by (auto simp: continuous_def)

lemma (in bounded_bilinear) continuous_on:
  "continuous_on s f  continuous_on s g  continuous_on s (λx. f x ** g x)"
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)

lemma (in bounded_bilinear) tendsto_zero:
  assumes f: "(f  0) F"
    and g: "(g  0) F"
  shows "((λx. f x ** g x)  0) F"
  using tendsto [OF f g] by (simp add: zero_left)

lemma (in bounded_bilinear) tendsto_left_zero:
  "(f  0) F  ((λx. f x ** c)  0) F"
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])

lemma (in bounded_bilinear) tendsto_right_zero:
  "(f  0) F  ((λx. c ** f x)  0) F"
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])

lemmas tendsto_of_real [tendsto_intros] =
  bounded_linear.tendsto [OF bounded_linear_of_real]

lemmas tendsto_scaleR [tendsto_intros] =
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]


text‹Analogous type class for multiplication›
class topological_semigroup_mult = topological_space + semigroup_mult +
  assumes tendsto_mult_Pair: "LIM x (nhds a ×F nhds b). fst x * snd x :> nhds (a * b)"

instance real_normed_algebra < topological_semigroup_mult
proof
  fix a b :: 'a
  show "((λx. fst x * snd x)  a * b) (nhds a ×F nhds b)"
    unfolding nhds_prod[symmetric]
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
    by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult])
qed

lemma tendsto_mult [tendsto_intros]:
  fixes a b :: "'a::topological_semigroup_mult"
  shows "(f  a) F  (g  b) F  ((λx. f x * g x)  a * b) F"
  using filterlim_compose[OF tendsto_mult_Pair, of "λx. (f x, g x)" a b F]
  by (simp add: nhds_prod[symmetric] tendsto_Pair)

lemma tendsto_mult_left: "(f  l) F  ((λx. c * (f x))  c * l) F"
  for c :: "'a::topological_semigroup_mult"
  by (rule tendsto_mult [OF tendsto_const])

lemma tendsto_mult_right: "(f  l) F  ((λx. (f x) * c)  l * c) F"
  for c :: "'a::topological_semigroup_mult"
  by (rule tendsto_mult [OF _ tendsto_const])

lemma tendsto_mult_left_iff [simp]:
   "c  0  tendsto(λx. c * f x) (c * l) F  tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
  by (auto simp: tendsto_mult_left dest: tendsto_mult_left [where c = "1/c"])

lemma tendsto_mult_right_iff [simp]:
   "c  0  tendsto(λx. f x * c) (l * c) F  tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
  by (auto simp: tendsto_mult_right dest: tendsto_mult_left [where c = "1/c"])

lemma tendsto_zero_mult_left_iff [simp]:
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c  0" shows "(λn. c * a n) 0  a  0"
  using assms tendsto_mult_left tendsto_mult_left_iff by fastforce

lemma tendsto_zero_mult_right_iff [simp]:
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c  0" shows "(λn. a n * c) 0  a  0"
  using assms tendsto_mult_right tendsto_mult_right_iff by fastforce

lemma tendsto_zero_divide_iff [simp]:
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c  0" shows "(λn. a n / c) 0  a  0"
  using tendsto_zero_mult_right_iff [of "1/c" a] assms by (simp add: field_simps)

lemma lim_const_over_n [tendsto_intros]:
  fixes a :: "'a::real_normed_field"
  shows "(λn. a / of_nat n)  0"
  using tendsto_mult [OF tendsto_const [of a] lim_1_over_n] by simp

lemmas continuous_of_real [continuous_intros] =
  bounded_linear.continuous [OF bounded_linear_of_real]

lemmas continuous_scaleR [continuous_intros] =
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]

lemmas continuous_mult [continuous_intros] =
  bounded_bilinear.continuous [OF bounded_bilinear_mult]

lemmas continuous_on_of_real [continuous_intros] =
  bounded_linear.continuous_on [OF bounded_linear_of_real]

lemmas continuous_on_scaleR [continuous_intros] =
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]

lemmas continuous_on_mult [continuous_intros] =
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]

lemmas tendsto_mult_zero =
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]

lemmas tendsto_mult_left_zero =
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]

lemmas tendsto_mult_right_zero =
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]


lemma continuous_mult_left:
  fixes c::"'a::real_normed_algebra"
  shows "continuous F f  continuous F (λx. c * f x)"
by (rule continuous_mult [OF continuous_const])

lemma continuous_mult_right:
  fixes c::"'a::real_normed_algebra"
  shows "continuous F f  continuous F (λx. f x * c)"
by (rule continuous_mult [OF _ continuous_const])

lemma continuous_on_mult_left:
  fixes c::"'a::real_normed_algebra"
  shows "continuous_on s f  continuous_on s (λx. c * f x)"
by (rule continuous_on_mult [OF continuous_on_const])

lemma continuous_on_mult_right:
  fixes c::"'a::real_normed_algebra"
  shows "continuous_on s f  continuous_on s (λx. f x * c)"
by (rule continuous_on_mult [OF _ continuous_on_const])

lemma continuous_on_mult_const [simp]:
  fixes c::"'a::real_normed_algebra"
  shows "continuous_on s ((*) c)"
  by (intro continuous_on_mult_left continuous_on_id)

lemma tendsto_divide_zero:
  fixes c :: "'a::real_normed_field"
  shows "(f  0) F  ((λx. f x / c)  0) F"
  by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero)

lemma tendsto_power [tendsto_intros]: "(f  a) F  ((λx. f x ^ n)  a ^ n) F"
  for f :: "'a  'b::{power,real_normed_algebra}"
  by (induct n) (simp_all add: tendsto_mult)

lemma tendsto_null_power: "(f  0) F; 0 < n  ((λx. f x ^ n)  0) F"
    for f :: "'a  'b::{power,real_normed_algebra_1}"
  using tendsto_power [of f 0 F n] by (simp add: power_0_left)

lemma continuous_power [continuous_intros]: "continuous F f  continuous F (λx. (f x)^n)"
  for f :: "'a::t2_space  'b::{power,real_normed_algebra}"
  unfolding continuous_def by (rule tendsto_power)

lemma continuous_on_power [continuous_intros]:
  fixes f :: "_  'b::{power,real_normed_algebra}"
  shows "continuous_on s f  continuous_on s (λx. (f x)^n)"
  unfolding continuous_on_def by (auto intro: tendsto_power)

lemma tendsto_prod [tendsto_intros]:
  fixes f :: "'a  'b  'c::{real_normed_algebra,comm_ring_1}"
  shows "(i. i  S  (f i  L i) F)  ((λx. iS. f i x)  (iS. L i)) F"
  by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult)

lemma continuous_prod [continuous_intros]:
  fixes f :: "'a  'b::t2_space  'c::{real_normed_algebra,comm_ring_1}"
  shows "(i. i  S  continuous F (f i))  continuous F (λx. iS. f i x)"
  unfolding continuous_def by (rule tendsto_prod)

lemma continuous_on_prod [continuous_intros]:
  fixes f :: "'a  _  'c::{real_normed_algebra,comm_ring_1}"
  shows "(i. i  S  continuous_on s (f i))  continuous_on s (λx. iS. f i x)"
  unfolding continuous_on_def by (auto intro: tendsto_prod)

lemma tendsto_of_real_iff:
  "((λx. of_real (f x) :: 'a::real_normed_div_algebra)  of_real c) F  (f  c) F"
  unfolding tendsto_iff by simp

lemma tendsto_add_const_iff:
  "((λx. c + f x :: 'a::topological_group_add)  c + d) F  (f  d) F"
  using tendsto_add[OF tendsto_const[of c], of f d]
    and tendsto_add[OF tendsto_const[of "-c"], of "λx. c + f x" "c + d"] by auto


class topological_monoid_mult = topological_semigroup_mult + monoid_mult
class topological_comm_monoid_mult = topological_monoid_mult + comm_monoid_mult

lemma tendsto_power_strong [tendsto_intros]:
  fixes f :: "_  'b :: topological_monoid_mult"
  assumes "(f  a) F" "(g  b) F"
  shows   "((λx. f x ^ g x)  a ^ b) F"
proof -
  have "((λx. f x ^ b)  a ^ b) F"
    by (induction b) (auto intro: tendsto_intros assms)
  also from assms(2) have "eventually (λx. g x = b) F"
    by (simp add: nhds_discrete filterlim_principal)
  hence "eventually (λx. f x ^ b = f x ^ g x) F"
    by eventually_elim simp
  hence "((λx. f x ^ b)  a ^ b) F  ((λx. f x ^ g x)  a ^ b) F"
    by (intro filterlim_cong refl)
  finally show ?thesis .
qed

lemma continuous_mult' [continuous_intros]:
  fixes f g :: "_  'b::topological_semigroup_mult"
  shows "continuous F f  continuous F g  continuous F (λx. f x * g x)"
  unfolding continuous_def by (rule tendsto_mult)

lemma continuous_power' [continuous_intros]:
  fixes f :: "_  'b::topological_monoid_mult"
  shows "continuous F f  continuous F g  continuous F (λx. f x ^ g x)"
  unfolding continuous_def by (rule tendsto_power_strong) auto

lemma continuous_on_mult' [continuous_intros]:
  fixes f g :: "_  'b::topological_semigroup_mult"
  shows "continuous_on A f  continuous_on A g  continuous_on A (λx. f x * g x)"
  unfolding continuous_on_def by (auto intro: tendsto_mult)

lemma continuous_on_power' [continuous_intros]:
  fixes f :: "_  'b::topological_monoid_mult"
  shows "continuous_on A f  continuous_on A g  continuous_on A (λx. f x ^ g x)"
  unfolding continuous_on_def by (auto intro: tendsto_power_strong)

lemma tendsto_mult_one:
  fixes f g :: "_  'b::topological_monoid_mult"
  shows "(f  1) F  (g  1) F  ((λx. f x * g x)  1) F"
  by (drule (1) tendsto_mult) simp

lemma tendsto_prod' [tendsto_intros]:
  fixes f :: "'a  'b  'c::topological_comm_monoid_mult"
  shows "(i. i  I  (f i  a i) F)  ((λx. iI. f i x)  (iI. a i)) F"
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_mult)

lemma tendsto_one_prod':
  fixes f :: "'a  'b  'c::topological_comm_monoid_mult"
  assumes "i. i  I  ((λx. f x i)  1) F"
  shows "((λi. prod (f i) I)  1) F"
  using tendsto_prod' [of I "λx y. f y x" "λx. 1"] assms by simp

lemma LIMSEQ_prod_0: 
  fixes f :: "nat  'a::{semidom,topological_space}"
  assumes "f i = 0"
  shows "(λn. prod f {..n})  0"
proof (subst tendsto_cong)
  show "F n in sequentially. prod f {..n} = 0"
    using assms eventually_at_top_linorder by auto
qed auto

lemma LIMSEQ_prod_nonneg: 
  fixes f :: "nat  'a::{linordered_semidom,linorder_topology}"
  assumes 0: "n. 0  f n" and a: "(λn. prod f {..n})  a"
  shows "a  0"
  by (simp add: "0" prod_nonneg LIMSEQ_le_const [OF a])

lemma continuous_prod' [continuous_intros]:
  fixes f :: "'a  'b::t2_space  'c::topological_comm_monoid_mult"
  shows "(i. i  I  continuous F (f i))  continuous F (λx. iI. f i x)"
  unfolding continuous_def by (rule tendsto_prod')

lemma continuous_on_prod' [continuous_intros]:
  fixes f :: "'a  'b::topological_space  'c::topological_comm_monoid_mult"
  shows "(i. i  I  continuous_on S (f i))  continuous_on S (λx. iI. f i x)"
  unfolding continuous_on_def by (auto intro: tendsto_prod')

instance nat :: topological_comm_monoid_mult
  by standard
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)

instance int :: topological_comm_monoid_mult
  by standard
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)

class comm_real_normed_algebra_1 = real_normed_algebra_1 + comm_monoid_mult

context real_normed_field
begin

subclass comm_real_normed_algebra_1
proof
  from norm_mult[of "1 :: 'a" 1] show "norm 1 = 1" by simp 
qed (simp_all add: norm_mult)

end

subsubsection ‹Inverse and division›

lemma (in bounded_bilinear) Zfun_prod_Bfun:
  assumes f: "Zfun f F"
    and g: "Bfun g F"
  shows "Zfun (λx. f x ** g x) F"
proof -
  obtain K where K: "0  K"
    and norm_le: "x y. norm (x ** y)  norm x * norm y * K"
    using nonneg_bounded by blast
  obtain B where B: "0 < B"
    and norm_g: "eventually (λx. norm (g x)  B) F"
    using g by (rule BfunE)
  have "eventually (λx. norm (f x ** g x)  norm (f x) * (B * K)) F"
  using norm_g proof eventually_elim
    case (elim x)
    have "norm (f x ** g x)  norm (f x) * norm (g x) * K"
      by (rule norm_le)
    also have "  norm (f x) * B * K"
      by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim)
    also have " = norm (f x) * (B * K)"
      by (rule mult.assoc)
    finally show "norm (f x ** g x)  norm (f x) * (B * K)" .
  qed
  with f show ?thesis
    by (rule Zfun_imp_Zfun)
qed

lemma (in bounded_bilinear) Bfun_prod_Zfun:
  assumes f: "Bfun f F"
    and g: "Zfun g F"
  shows "Zfun (λx. f x ** g x) F"
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)

lemma Bfun_inverse:
  fixes a :: "'a::real_normed_div_algebra"
  assumes f: "(f  a) F"
  assumes a: "a  0"
  shows "Bfun (λx. inverse (f x)) F"
proof -
  from a have "0 < norm a" by simp
  then have "r>0. r < norm a" by (rule dense)
  then obtain r where r1: "0 < r" and r2: "r < norm a"
    by blast
  have "eventually (λx. dist (f x) a < r) F"
    using tendstoD [OF f r1] by blast
  then have "eventually (λx. norm (inverse (f x))  inverse (norm a - r)) F"
  proof eventually_elim
    case (elim x)
    then have 1: "norm (f x - a) < r"
      by (simp add: dist_norm)
    then have 2: "f x  0" using r2 by auto
    then have "norm (inverse (f x)) = inverse (norm (f x))"
      by (rule nonzero_norm_inverse)
    also have "  inverse (norm a - r)"
    proof (rule le_imp_inverse_le)
      show "0 < norm a - r"
        using r2 by simp
      have "norm a - norm (f x)  norm (a - f x)"
        by (rule norm_triangle_ineq2)
      also have " = norm (f x - a)"
        by (rule norm_minus_commute)
      also have " < r" using 1 .
      finally show "norm a - r  norm (f x)"
        by simp
    qed
    finally show "norm (inverse (f x))  inverse (norm a - r)" .
  qed
  then show ?thesis by (rule BfunI)
qed

lemma tendsto_inverse [tendsto_intros]:
  fixes a :: "'a::real_normed_div_algebra"
  assumes f: "(f  a) F"
    and a: "a  0"
  shows "((λx. inverse (f x))  inverse a) F"
proof -
  from a have "0 < norm a" by simp
  with f have "eventually (λx. dist (f x) a < norm a) F"
    by (rule tendstoD)
  then have "eventually (λx. f x  0) F"
    unfolding dist_norm by (auto elim!: eventually_mono)
  with a have "eventually (λx. inverse (f x) - inverse a =
    - (inverse (f x) * (f x - a) * inverse a)) F"
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
  moreover have "Zfun (λx. - (inverse (f x) * (f x - a) * inverse a)) F"
    by (intro Zfun_minus Zfun_mult_left
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
  ultimately show ?thesis
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
qed

lemma continuous_inverse:
  fixes f :: "'a::t2_space  'b::real_normed_div_algebra"
  assumes "continuous F f"
    and "f (Lim F (λx. x))  0"
  shows "continuous F (λx. inverse (f x))"
  using assms unfolding continuous_def by (rule tendsto_inverse)

lemma continuous_at_within_inverse[continuous_intros]:
  fixes f :: "'a::t2_space  'b::real_normed_div_algebra"
  assumes "continuous (at a within s) f"
    and "f a  0"
  shows "continuous (at a within s) (λx. inverse (f x))"
  using assms unfolding continuous_within by (rule tendsto_inverse)

lemma continuous_on_inverse[continuous_intros]:
  fixes f :: "'a::topological_space  'b::real_normed_div_algebra"
  assumes "continuous_on s f"
    and "xs. f x  0"
  shows "continuous_on s (λx. inverse (f x))"
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)

lemma tendsto_divide [tendsto_intros]:
  fixes a b :: "'a::real_normed_field"
  shows "(f  a) F  (g  b) F  b  0  ((λx. f x / g x)  a / b) F"
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)

lemma continuous_divide:
  fixes f g :: "'a::t2_space  'b::real_normed_field"
  assumes "continuous F f"
    and "continuous F g"
    and "g (Lim F (λx. x))  0"
  shows "continuous F (λx. (f x) / (g x))"
  using assms unfolding continuous_def by (rule tendsto_divide)

lemma continuous_at_within_divide[continuous_intros]:
  fixes f g :: "'a::t2_space  'b::real_normed_field"
  assumes "continuous (at a within s) f" "continuous (at a within s) g"
    and "g a  0"
  shows "continuous (at a within s) (λx. (f x) / (g x))"
  using assms unfolding continuous_within by (rule tendsto_divide)

lemma isCont_divide[continuous_intros, simp]:
  fixes f g :: "'a::t2_space  'b::real_normed_field"
  assumes "isCont f a" "isCont g a" "g a  0"
  shows "isCont (λx. (f x) / g x) a"
  using assms unfolding continuous_at by (rule tendsto_divide)

lemma continuous_on_divide[continuous_intros]:
  fixes f :: "'a::topological_space  'b::real_normed_field"
  assumes "continuous_on s f" "continuous_on s g"
    and "xs. g x  0"
  shows "continuous_on s (λx. (f x) / (g x))"
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)

lemma tendsto_power_int [tendsto_intros]:
  fixes a :: "'a::real_normed_div_algebra"
  assumes f: "(f  a) F"
    and a: "a  0"
  shows "((λx. power_int (f x) n)  power_int a n) F"
  using assms by (cases n rule: int_cases4) (auto intro!: tendsto_intros simp: power_int_minus)

lemma continuous_power_int:
  fixes f :: "'a::t2_space  'b::real_normed_div_algebra"
  assumes "continuous F f"
    and "f (Lim F (λx. x))  0"
  shows "continuous F (λx. power_int (f x) n)"
  using assms unfolding continuous_def by (rule tendsto_power_int)

lemma continuous_at_within_power_int[continuous_intros]:
  fixes f :: "'a::t2_space  'b::real_normed_div_algebra"
  assumes "continuous (at a within s) f"
    and "f a  0"
  shows "continuous (at a within s) (λx. power_int (f x) n)"
  using assms unfolding continuous_within by (rule tendsto_power_int)

lemma continuous_on_power_int [continuous_intros]:
  fixes f :: "'a::topological_space  'b::real_normed_div_algebra"
  assumes "continuous_on s f" and "xs. f x  0"
  shows "continuous_on s (λx. power_int (f x) n)"
  using assms unfolding continuous_on_def by (blast intro: tendsto_power_int)

lemma tendsto_power_int' [tendsto_intros]:
  fixes a :: "'a::real_normed_div_algebra"
  assumes f: "(f  a) F"
    and a: "a  0  n  0"
  shows "((λx. power_int (f x) n)  power_int a n) F"
  using assms by (cases n rule: int_cases4) (auto intro!: tendsto_intros simp: power_int_minus)

lemma tendsto_sgn [tendsto_intros]: "(f  l) F  l  0  ((λx. sgn (f x))  sgn l) F"
  for l :: "'a::real_normed_vector"
  unfolding sgn_div_norm by (simp add: tendsto_intros)

lemma continuous_sgn:
  fixes f :: "'a::t2_space  'b::real_normed_vector"
  assumes "continuous F f"
    and "f (Lim F (λx. x))  0"
  shows "continuous F (λx. sgn (f x))"
  using assms unfolding continuous_def by (rule tendsto_sgn)

lemma continuous_at_within_sgn[continuous_intros]:
  fixes f :: "'a::t2_space  'b::real_normed_vector"
  assumes "continuous (at a within s) f"
    and "f a  0"
  shows "continuous (at a within s) (λx. sgn (f x))"
  using assms unfolding continuous_within by (rule tendsto_sgn)

lemma isCont_sgn[continuous_intros]:
  fixes f :: "'a::t2_space  'b::real_normed_vector"
  assumes "isCont f a"
    and "f a  0"
  shows "isCont (λx. sgn (f x)) a"
  using assms unfolding continuous_at by (rule tendsto_sgn)

lemma continuous_on_sgn[continuous_intros]:
  fixes f :: "'a::topological_space  'b::real_normed_vector"
  assumes "continuous_on s f"
    and "xs. f x  0"
  shows "continuous_on s (λx. sgn (f x))"
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)

lemma filterlim_at_infinity:
  fixes f :: "_  'a::real_normed_vector"
  assumes "0  c"
  shows "(LIM x F. f x :> at_infinity)  (r>c. eventually (λx. r  norm (f x)) F)"
  unfolding filterlim_iff eventually_at_infinity
proof safe
  fix P :: "'a  bool"
  fix b
  assume *: "r>c. eventually (λx. r  norm (f x)) F"
  assume P: "x. b  norm x  P x"
  have "max b (c + 1) > c" by auto
  with * have "eventually (λx. max b (c + 1)  norm (f x)) F"
    by auto
  then show "eventually (λx. P (f x)) F"
  proof eventually_elim
    case (elim x)
    with P show "P (f x)" by auto
  qed
qed force

lemma filterlim_at_infinity_imp_norm_at_top:
  fixes F
  assumes "filterlim f at_infinity F"
  shows   "filterlim (λx. norm (f x)) at_top F"
proof -
  {
    fix r :: real
    have "F x in F. r  norm (f x)" using filterlim_at_infinity[of 0 f F] assms
      by (cases "r > 0")
         (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero])
  }
  thus ?thesis by (auto simp: filterlim_at_top)
qed

lemma filterlim_norm_at_top_imp_at_infinity:
  fixes F
  assumes "filterlim (λx. norm (f x)) at_top F"
  shows   "filterlim f at_infinity F"
  using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top)

lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity"
  by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident)

lemma filterlim_at_infinity_conv_norm_at_top:
  "filterlim f at_infinity G  filterlim (λx. norm (f x)) at_top G"
  by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0])

lemma eventually_not_equal_at_infinity:
  "eventually (λx. x  (a :: 'a :: {real_normed_vector})) at_infinity"
proof -
  from filterlim_norm_at_top[where 'a = 'a]
    have "F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense)
  thus ?thesis by eventually_elim auto
qed

lemma filterlim_int_of_nat_at_topD:
  fixes F
  assumes "filterlim (λx. f (int x)) F at_top"
  shows   "filterlim f F at_top"
proof -
  have "filterlim (λx. f (int (nat x))) F at_top"
    by (rule filterlim_compose[OF assms filterlim_nat_sequentially])
  also have "?this  filterlim f F at_top"
    by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto
  finally show ?thesis .
qed

lemma filterlim_int_sequentially [tendsto_intros]:
  "filterlim int at_top sequentially"
  unfolding filterlim_at_top
proof
  fix C :: int
  show "eventually (λn. int n  C) at_top"
    using eventually_ge_at_top[of "nat C"] by eventually_elim linarith
qed

lemma filterlim_real_of_int_at_top [tendsto_intros]:
  "filterlim real_of_int at_top at_top"
  unfolding filterlim_at_top
proof
  fix C :: real
  show "eventually (λn. real_of_int n  C) at_top"
    using eventually_ge_at_top[of "C"] by eventually_elim linarith
qed

lemma filterlim_abs_real: "filterlim (abs::real  real) at_top at_top"
proof (subst filterlim_cong[OF refl refl])
  from eventually_ge_at_top[of "0::real"] show "eventually (λx::real. ¦x¦ = x) at_top"
    by eventually_elim simp
qed (simp_all add: filterlim_ident)

lemma filterlim_of_real_at_infinity [tendsto_intros]:
  "filterlim (of_real :: real  'a :: real_normed_algebra_1) at_infinity at_top"
  by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real)

lemma not_tendsto_and_filterlim_at_infinity:
  fixes c :: "'a::real_normed_vector"
  assumes "F  bot"
    and "(f  c) F"
    and "filterlim f at_infinity F"
  shows False
proof -
  from tendstoD[OF assms(2), of "1/2"]
  have "eventually (λx. dist (f x) c < 1/2) F"
    by simp
  moreover
  from filterlim_at_infinity[of "norm c" f F] assms(3)
  have "eventually (λx. norm (f x)  norm c + 1) F" by simp
  ultimately have "eventually (λx. False) F"
  proof eventually_elim
    fix x
    assume A: "dist (f x) c < 1/2"
    assume "norm (f x)  norm c + 1"
    also have "norm (f x) = dist (f x) 0" by simp
    also have "  dist (f x) c + dist c 0" by (rule dist_triangle)
    finally show False using A by simp
  qed
  with assms show False by simp
qed

lemma filterlim_at_infinity_imp_not_convergent:
  assumes "filterlim f at_infinity sequentially"
  shows "¬ convergent f"
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
     (simp_all add: convergent_LIMSEQ_iff)

lemma filterlim_at_infinity_imp_eventually_ne:
  assumes "filterlim f at_infinity F"
  shows "eventually (λz. f z  c) F"
proof -
  have "norm c + 1 > 0"
    by (intro add_nonneg_pos) simp_all
  with filterlim_at_infinity[OF order.refl, of f F] assms
  have "eventually (λz. norm (f z)  norm c + 1) F"
    by blast
  then show ?thesis
    by eventually_elim auto
qed

lemma tendsto_of_nat [tendsto_intros]:
  "filterlim (of_nat :: nat  'a::real_normed_algebra_1) at_infinity sequentially"
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
  fix r :: real
  assume r: "r > 0"
  define n where "n = nat r"
  from r have n: "mn. of_nat m  r"
    unfolding n_def by linarith
  from eventually_ge_at_top[of n] show "eventually (λm. norm (of_nat m :: 'a)  r) sequentially"
    by eventually_elim (use n in simp_all)
qed


subsection ‹Relate constat, constat_left and constat_right

text ‹
  This lemmas are useful for conversion between termat x to termat_left x and
  termat_right x and also termat_right 0.
›

lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]

lemma filtermap_nhds_shift: "filtermap (λx. x - d) (nhds a) = nhds (a - d)"
  for a d :: "'a::real_normed_vector"
  by (rule filtermap_fun_inverse[where g="λx. x + d"])
    (auto intro!: tendsto_eq_intros filterlim_ident)

lemma filtermap_nhds_minus: "filtermap (λx. - x) (nhds a) = nhds (- a)"
  for a :: "'a::real_normed_vector"
  by (rule filtermap_fun_inverse[where g=uminus])
    (auto intro!: tendsto_eq_intros filterlim_ident)

lemma filtermap_at_shift: "filtermap (λx. x - d) (at a) = at (a - d)"
  for a d :: "'a::real_normed_vector"
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])

lemma filtermap_at_right_shift: "filtermap (λx. x - d) (at_right a) = at_right (a - d)"
  for a d :: "real"
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])

lemma filterlim_shift:
  fixes d :: "'a::real_normed_vector"
  assumes "filterlim f F (at a)"
  shows "filterlim (f  (+) d) F (at (a - d))"
  unfolding filterlim_iff
proof (intro strip)
  fix P
  assume "eventually P F"
  then have "F x in filtermap (λy. y - d) (at a). P (f (d + x))"
    using assms by (force simp add: filterlim_iff eventually_filtermap)
  then show "(F x in at (a - d). P ((f  (+) d) x))"
    by (force simp add: filtermap_at_shift)
qed

lemma filterlim_shift_iff:
  fixes d :: "'a::real_normed_vector"
  shows "filterlim (f  (+) d) F (at (a - d)) = filterlim f F (at a)"   (is "?lhs = ?rhs")
proof
  assume L: ?lhs show ?rhs
    using filterlim_shift [OF L, of "-d"] by (simp add: filterlim_iff)
qed (metis filterlim_shift)

lemma at_right_to_0: "at_right a = filtermap (λx. x + a) (at_right 0)"
  for a :: real
  using filtermap_at_right_shift[of "-a" 0] by simp

lemma filterlim_at_right_to_0:
  "filterlim f F (at_right a)  filterlim (λx. f (x + a)) F (at_right 0)"
  for a :: real
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..

lemma eventually_at_right_to_0:
  "eventually P (at_right a)  eventually (λx. P (x + a)) (at_right 0)"
  for a :: real
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)

lemma at_to_0: "at a = filtermap (λx. x + a) (at 0)"
  for a :: "'a::real_normed_vector"
  using filtermap_at_shift[of "-a" 0] by simp

lemma filterlim_at_to_0:
  "filterlim f F (at a)  filterlim (λx. f (x + a)) F (at 0)"
  for a :: "'a::real_normed_vector"
  unfolding filterlim_def filtermap_filtermap at_to_0[of a] ..

lemma eventually_at_to_0:
  "eventually P (at a)  eventually (λx. P (x + a)) (at 0)"
  for a ::  "'a::real_normed_vector"
  unfolding at_to_0[of a] by (simp add: eventually_filtermap)

lemma filtermap_at_minus: "filtermap (λx. - x) (at a) = at (- a)"
  for a :: "'a::real_normed_vector"
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])

lemma at_left_minus: "at_left a = filtermap (λx. - x) (at_right (- a))"
  for a :: real
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])

lemma at_right_minus: "at_right a = filtermap (λx. - x) (at_left (- a))"
  for a :: real
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])


lemma filterlim_at_left_to_right:
  "filterlim f F (at_left a)  filterlim (λx. f (- x)) F (at_right (-a))"
  for a :: real
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..

lemma eventually_at_left_to_right:
  "eventually P (at_left a)  eventually (λx. P (- x)) (at_right (-a))"
  for a :: real
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)

lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
  unfolding filterlim_at_top eventually_at_bot_dense
  by (metis leI minus_less_iff order_less_asym)

lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
  unfolding filterlim_at_bot eventually_at_top_dense
  by (metis leI less_minus_iff order_less_asym)

lemma at_bot_mirror :
  shows "(at_bot::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_top"
proof (rule filtermap_fun_inverse[symmetric])
  show "filterlim uminus at_top (at_bot::'a filter)"
    using eventually_at_bot_linorder filterlim_at_top le_minus_iff by force
  show "filterlim uminus (at_bot::'a filter) at_top"
    by (simp add: filterlim_at_bot minus_le_iff)
qed auto

lemma at_top_mirror :
  shows "(at_top::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_bot"
  apply (subst at_bot_mirror)
  by (auto simp: filtermap_filtermap)

lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F)  (LIM x at_bot. f (-x::real) :> F)"
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..

lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F)  (LIM x at_top. f (-x::real) :> F)"
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..

lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top)  (LIM x F. - (f x) :: real :> at_bot)"
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
    and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "λx. - f x" F]
  by auto

lemma tendsto_at_botI_sequentially:
  fixes f :: "real  'b::first_countable_topology"
  assumes *: "X. filterlim X at_bot sequentially  (λn. f (X n))  y"
  shows "(f  y) at_bot"
  unfolding filterlim_at_bot_mirror
proof (rule tendsto_at_topI_sequentially)
  fix X :: "nat  real" assume "filterlim X at_top sequentially"
  thus "(λn. f (-X n))  y" by (intro *) (auto simp: filterlim_uminus_at_top)
qed

lemma filterlim_at_infinity_imp_filterlim_at_top:
  assumes "filterlim (f :: 'a  real) at_infinity F"
  assumes "eventually (λx. f x > 0) F"
  shows   "filterlim f at_top F"
proof -
  from assms(2) have *: "eventually (λx. norm (f x) = f x) F" by eventually_elim simp
  from assms(1) show ?thesis unfolding filterlim_at_infinity_conv_norm_at_top
    by (subst (asm) filterlim_cong[OF refl refl *])
qed

lemma filterlim_at_infinity_imp_filterlim_at_bot:
  assumes "filterlim (f :: 'a  real) at_infinity F"
  assumes "eventually (λx. f x < 0) F"
  shows   "filterlim f at_bot F"
proof -
  from assms(2) have *: "eventually (λx. norm (f x) = -f x) F" by eventually_elim simp
  from assms(1) have "filterlim (λx. - f x) at_top F"
    unfolding filterlim_at_infinity_conv_norm_at_top
    by (subst (asm) filterlim_cong[OF refl refl *])
  thus ?thesis by (simp add: filterlim_uminus_at_top)
qed

lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot)  (LIM x F. - (f x) :: real :> at_top)"
  unfolding filterlim_uminus_at_top by simp

lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
proof safe
  fix Z :: real
  assume [arith]: "0 < Z"
  then have "eventually (λx. x < inverse Z) (nhds 0)"
    by (auto simp: eventually_nhds_metric dist_real_def intro!: exI[of _ "¦inverse Z¦"])
  then show "eventually (λx. x  0  x  {0<..}  Z  inverse x) (nhds 0)"
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
qed

lemma tendsto_inverse_0:
  fixes x :: "_  'a::real_normed_div_algebra"
  shows "(inverse  (0::'a)) at_infinity"
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
proof safe
  fix r :: real
  assume "0 < r"
  show "b. x. b  norm x  norm (inverse x :: 'a) < r"
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
    fix x :: 'a
    from 0 < r have "0 < inverse (r / 2)" by simp
    also assume *: "inverse (r / 2)  norm x"
    finally show "norm (inverse x) < r"
      using * 0 < r
      by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
  qed
qed

lemma tendsto_add_filterlim_at_infinity:
  fixes c :: "'b::real_normed_vector"
    and F :: "'a filter"
  assumes "(f  c) F"
    and "filterlim g at_infinity F"
  shows "filterlim (λx. f x + g x) at_infinity F"
proof (subst filterlim_at_infinity[OF order_refl], safe)
  fix r :: real
  assume r: "r > 0"
  from assms(1) have "((λx. norm (f x))  norm c) F"
    by (rule tendsto_norm)
  then have "eventually (λx. norm (f x) < norm c + 1) F"
    by (rule order_tendstoD) simp_all
  moreover from r have "r + norm c + 1 > 0"
    by (intro add_pos_nonneg) simp_all
  with assms(2) have "eventually (λx. norm (g x)  r + norm c + 1) F"
    unfolding filterlim_at_infinity[OF order_refl]
    by (elim allE[of _ "r + norm c + 1"]) simp_all
  ultimately show "eventually (λx. norm (f x + g x)  r) F"
  proof eventually_elim
    fix x :: 'a
    assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1  norm (g x)"
    from A B have "r  norm (g x) - norm (f x)"
      by simp
    also have "norm (g x) - norm (f x)  norm (g x + f x)"
      by (rule norm_diff_ineq)
    finally show "r  norm (f x + g x)"
      by (simp add: add_ac)
  qed
qed

lemma tendsto_add_filterlim_at_infinity':
  fixes c :: "'b::real_normed_vector"
    and F :: "'a filter"
  assumes "filterlim f at_infinity F"
    and "(g  c) F"
  shows "filterlim (λx. f x + g x) at_infinity F"
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+

lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
  unfolding filterlim_at
  by (auto simp: eventually_at_top_dense)
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)

lemma filterlim_inverse_at_top:
  "(f  (0 :: real)) F  eventually (λx. 0 < f x) F  LIM x F. inverse (f x) :> at_top"
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)

lemma filterlim_inverse_at_bot_neg:
  "LIM x (at_left (0::real)). inverse x :> at_bot"
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)

lemma filterlim_inverse_at_bot:
  "(f  (0 :: real)) F  eventually (λx. f x < 0) F  LIM x F. inverse (f x) :> at_bot"
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])

lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)

lemma eventually_at_right_to_top:
  "eventually P (at_right (0::real))  eventually (λx. P (inverse x)) at_top"
  unfolding at_right_to_top eventually_filtermap ..

lemma filterlim_at_right_to_top:
  "filterlim f F (at_right (0::real))  (LIM x at_top. f (inverse x) :> F)"
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..

lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..

lemma eventually_at_top_to_right:
  "eventually P at_top  eventually (λx. P (inverse x)) (at_right (0::real))"
  unfolding at_top_to_right eventually_filtermap ..

lemma filterlim_at_top_to_right:
  "filterlim f F at_top  (LIM x (at_right (0::real)). f (inverse x) :> F)"
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..

lemma filterlim_inverse_at_infinity:
  fixes x :: "_  'a::{real_normed_div_algebra, division_ring}"
  shows "filterlim inverse at_infinity (at (0::'a))"
  unfolding filterlim_at_infinity[OF order_refl]
proof safe
  fix r :: real
  assume "0 < r"
  then show "eventually (λx::'a. r  norm (inverse x)) (at 0)"
    unfolding eventually_at norm_inverse
    by (intro exI[of _ "inverse r"])
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
qed

lemma filterlim_inverse_at_iff:
  fixes g :: "'a  'b::{real_normed_div_algebra, division_ring}"
  shows "(LIM x F. inverse (g x) :> at 0)  (LIM x F. g x :> at_infinity)"
  unfolding filterlim_def filtermap_filtermap[symmetric]
proof
  assume "filtermap g F  at_infinity"
  then have "filtermap inverse (filtermap g F)  filtermap inverse at_infinity"
    by (rule filtermap_mono)
  also have "  at 0"
    using tendsto_inverse_0[where 'a='b]
    by (auto intro!: exI[of _ 1]
        simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
  finally show "filtermap inverse (filtermap g F)  at 0" .
next
  assume "filtermap inverse (filtermap g F)  at 0"
  then have "filtermap inverse (filtermap inverse (filtermap g F))  filtermap inverse (at 0)"
    by (rule filtermap_mono)
  with filterlim_inverse_at_infinity show "filtermap g F  at_infinity"
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
qed

lemma tendsto_mult_filterlim_at_infinity:
  fixes c :: "'a::real_normed_field"
  assumes  "(f  c) F" "c  0"
  assumes "filterlim g at_infinity F"
  shows "filterlim (λx. f x * g x) at_infinity F"
proof -
  have "((λx. inverse (f x) * inverse (g x))  inverse c * 0) F"
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
  then have "filterlim (λx. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
    unfolding filterlim_at
    using assms
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
  then show ?thesis
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
qed

lemma filterlim_power_int_neg_at_infinity:
  fixes f :: "_  'a::{real_normed_div_algebra, division_ring}"
  assumes "n < 0" and lim: "(f  0) F" and ev: "eventually (λx. f x  0) F"
  shows   "filterlim (λx. f x powi n) at_infinity F"
proof -
  have lim': "((λx. f x ^ nat (- n))  0) F"
    by (rule tendsto_eq_intros lim)+ (use n < 0 in auto)
  have ev': "eventually (λx. f x ^ nat (-n)  0) F"
    using ev by eventually_elim (use n < 0 in auto)
  have "filterlim (λx. inverse (f x ^ nat (-n))) at_infinity F"
    by (intro filterlim_compose[OF filterlim_inverse_at_infinity])
       (use lim' ev' in auto simp: filterlim_at)
  thus ?thesis
    using n < 0 by (simp add: power_int_def power_inverse)
qed
  
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top  ((λx. inverse (f x) :: real)  0) F"
  by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)

lemma filterlim_inverse_at_top_iff:
  "eventually (λx. 0 < f x) F  (LIM x F. inverse (f x) :> at_top)  (f  (0 :: real)) F"
  by (auto dest: tendsto_inverse_0_at_top filterlim_inverse_at_top)

lemma filterlim_at_top_iff_inverse_0:
  "eventually (λx. 0 < f x) F  (LIM x F. f x :> at_top)  ((inverse  f)  (0 :: real)) F"
  using filterlim_inverse_at_top_iff [of "inverse  f"] by auto

lemma real_tendsto_divide_at_top:
  fixes c::"real"
  assumes "(f  c) F"
  assumes "filterlim g at_top F"
  shows "((λx. f x / g x)  0) F"
  by (auto simp: divide_inverse_commute
      intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms)

lemma mult_nat_left_at_top: "c > 0  filterlim (λx. c * x) at_top sequentially"
  for c :: nat
  by (rule filterlim_subseq) (auto simp: strict_mono_def)

lemma mult_nat_right_at_top: "c > 0  filterlim (λx. x * c) at_top sequentially"
  for c :: nat
  by (rule filterlim_subseq) (auto simp: strict_mono_def)

lemma filterlim_times_pos:
  "LIM x F1. c * f x :> at_right l"
  if "filterlim f (at_right p) F1" "0 < c" "l = c * p"
  for c::"'a::{linordered_field, linorder_topology}"
  unfolding filterlim_iff
proof safe
  fix P
  assume "F x in at_right l. P x"
  then obtain d where "c * p < d" "y. y > c * p  y < d  P y"
    unfolding l = _ eventually_at_right_field
    by auto
  then have "F a in at_right p. P (c * a)"
    by (auto simp: eventually_at_right_field 0 < c field_simps intro!: exI[where x="d/c"])
  from that(1)[unfolded filterlim_iff, rule_format, OF this]
  show "F x in F1. P (c * f x)" .
qed

lemma filtermap_nhds_times: "c  0  filtermap (times c) (nhds a) = nhds (c * a)"
  for a c :: "'a::real_normed_field"
  by (rule filtermap_fun_inverse[where g="λx. inverse c * x"])
    (auto intro!: tendsto_eq_intros filterlim_ident)

lemma filtermap_times_pos_at_right:
  fixes c::"'a::{linordered_field, linorder_topology}"
  assumes "c > 0"
  shows "filtermap (times c) (at_right p) = at_right (c * p)"
  using assms
  by (intro filtermap_fun_inverse[where g="λx. inverse c * x"])
    (auto intro!: filterlim_ident filterlim_times_pos)

lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
proof (rule antisym)
  have "(inverse  (0::'a)) at_infinity"
    by (fact tendsto_inverse_0)
  then show "filtermap inverse at_infinity  at (0::'a)"
    using filterlim_def filterlim_ident filterlim_inverse_at_iff by fastforce
next
  have "filtermap inverse (filtermap inverse (at (0::'a)))  filtermap inverse at_infinity"
    using filterlim_inverse_at_infinity unfolding filterlim_def
    by (rule filtermap_mono)
  then show "at (0::'a)  filtermap inverse at_infinity"
    by (simp add: filtermap_ident filtermap_filtermap)
qed

lemma lim_at_infinity_0:
  fixes l :: "'a::{real_normed_field,field}"
  shows "(f  l) at_infinity  ((f  inverse)  l) (at (0::'a))"
  by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)

lemma lim_zero_infinity:
  fixes l :: "'a::{real_normed_field,field}"
  shows "((λx. f(1 / x))  l) (at (0::'a))  (f  l) at_infinity"
  by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)


text ‹
  We only show rules for multiplication and addition when the functions are either against a real
  value or against infinity. Further rules are easy to derive by using @{thm
  filterlim_uminus_at_top}.
›

lemma filterlim_tendsto_pos_mult_at_top:
  assumes f: "(f  c) F"
    and c: "0 < c"
    and g: "LIM x F. g x :> at_top"
  shows "LIM x F. (f x * g x :: real) :> at_top"
  unfolding filterlim_at_top_gt[where c=0]
proof safe
  fix Z :: real
  assume "0 < Z"
  from f 0 < c have "eventually (λx. c / 2 < f x) F"
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
        simp: dist_real_def abs_real_def split: if_split_asm)
  moreover from g have "eventually (λx. (Z / c * 2)  g x) F"
    unfolding filterlim_at_top by auto
  ultimately show "eventually (λx. Z  f x * g x) F"
  proof eventually_elim
    case (elim x)
    with 0 < Z 0 < c have "c / 2 * (Z / c * 2)  f x * g x"
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
    with 0 < c show "Z  f x * g x"
       by simp
  qed
qed

lemma filterlim_at_top_mult_at_top:
  assumes f: "LIM x F. f x :> at_top"
    and g: "LIM x F. g x :> at_top"
  shows "LIM x F. (f x * g x :: real) :> at_top"
  unfolding filterlim_at_top_gt[where c=0]
proof safe
  fix Z :: real
  assume "0 < Z"
  from f have "eventually (λx. 1  f x) F"
    unfolding filterlim_at_top by auto
  moreover from g have "eventually (λx. Z  g x) F"
    unfolding filterlim_at_top by auto
  ultimately show "eventually (λx. Z  f x * g x) F"
  proof eventually_elim
    case (elim x)
    with 0 < Z have "1 * Z  f x * g x"
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
    then show "Z  f x * g x"
       by simp
  qed
qed

lemma filterlim_at_top_mult_tendsto_pos:
  assumes f: "(f  c) F"
    and c: "0 < c"
    and g: "LIM x F. g x :> at_top"
  shows "LIM x F. (g x * f x:: real) :> at_top"
  by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g)

lemma filterlim_tendsto_pos_mult_at_bot:
  fixes c :: real
  assumes "(f  c) F" "0 < c" "filterlim g at_bot F"
  shows "LIM x F. f x * g x :> at_bot"
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "λx. - g x"] assms(3)
  unfolding filterlim_uminus_at_bot by simp

lemma filterlim_tendsto_neg_mult_at_bot:
  fixes c :: real
  assumes c: "(f  c) F" "c < 0" and g: "filterlim g at_top F"
  shows "LIM x F. f x * g x :> at_bot"
  using c filterlim_tendsto_pos_mult_at_top[of "λx. - f x" "- c" F, OF _ _ g]
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp


lemma filterlim_cmult_at_bot_at_top:
  assumes "filterlim (h :: _  real) at_top F" "c  0" "G = (if c > 0 then at_top else at_bot)"
  shows   "filterlim (λx. c * h x) G F"
  using assms filterlim_tendsto_pos_mult_at_top[OF tendsto_const[of c], of h F]
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const[of c], of h F] by simp

lemma filterlim_pow_at_top:
  fixes f :: "'a  real"
  assumes "0 < n"
    and f: "LIM x F. f x :> at_top"
  shows "LIM x F. (f x)^n :: real :> at_top"
  using 0 < n
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n) with f show ?case
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
qed

lemma filterlim_pow_at_bot_even:
  fixes f :: "real  real"
  shows "0 < n  LIM x F. f x :> at_bot  even n  LIM x F. (f x)^n :> at_top"
  using filterlim_pow_at_top[of n "λx. - f x" F] by (simp add: filterlim_uminus_at_top)

lemma filterlim_pow_at_bot_odd:
  fixes f :: "real  real"
  shows "0 < n  LIM x F. f x :> at_bot  odd n  LIM x F. (f x)^n :> at_bot"
  using filterlim_pow_at_top[of n "λx. - f x" F] by (simp add: filterlim_uminus_at_bot)

lemma filterlim_power_at_infinity [tendsto_intros]:
  fixes F and f :: "'a  'b :: real_normed_div_algebra"
  assumes "filterlim f at_infinity F" "n > 0"
  shows   "filterlim (λx. f x ^ n) at_infinity F"
  by (rule filterlim_norm_at_top_imp_at_infinity)
     (auto simp: norm_power intro!: filterlim_pow_at_top assms
           intro: filterlim_at_infinity_imp_norm_at_top)

lemma filterlim_tendsto_add_at_top:
  assumes f: "(f  c) F"
    and g: "LIM x F. g x :> at_top"
  shows "LIM x F. (f x + g x :: real) :> at_top"
  unfolding filterlim_at_top_gt[where c=0]
proof safe
  fix Z :: real
  assume "0 < Z"
  from f have "eventually (λx. c - 1 < f x) F"
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
  moreover from g have "eventually (λx. Z - (c - 1)  g x) F"
    unfolding filterlim_at_top by auto
  ultimately show "eventually (λx. Z  f x + g x) F"
    by eventually_elim simp
qed

lemma LIM_at_top_divide:
  fixes f g :: "'a  real"
  assumes f: "(f  a) F" "0 < a"
    and g: "(g  0) F" "eventually (λx. 0 < g x) F"
  shows "LIM x F. f x / g x :> at_top"
  unfolding divide_inverse
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])

lemma filterlim_at_top_add_at_top:
  assumes f: "LIM x F. f x :> at_top"
    and g: "LIM x F. g x :> at_top"
  shows "LIM x F. (f x + g x :: real) :> at_top"
  unfolding filterlim_at_top_gt[where c=0]
proof safe
  fix Z :: real
  assume "0 < Z"
  from f have "eventually (λx. 0  f x) F"
    unfolding filterlim_at_top by auto
  moreover from g have "eventually (λx. Z  g x) F"
    unfolding filterlim_at_top by auto
  ultimately show "eventually (λx. Z  f x + g x) F"
    by eventually_elim simp
qed

lemma tendsto_divide_0:
  fixes f :: "_  'a::{real_normed_div_algebra, division_ring}"
  assumes f: "(f  c) F"
    and g: "LIM x F. g x :> at_infinity"
  shows "((λx. f x / g x)  0) F"
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]]
  by (simp add: divide_inverse)

lemma linear_plus_1_le_power:
  fixes x :: real
  assumes x: "0  x"
  shows "real n * x + 1  (x + 1) ^ n"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  from x have "real (Suc n) * x + 1  (x + 1) * (real n * x + 1)"
    by (simp add: field_simps)
  also have "  (x + 1)^Suc n"
    using Suc x by (simp add: mult_left_mono)
  finally show ?case .
qed

lemma filterlim_realpow_sequentially_gt1:
  fixes x :: "'a :: real_normed_div_algebra"
  assumes x[arith]: "1 < norm x"
  shows "LIM n sequentially. x ^ n :> at_infinity"
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
  fix y :: real
  assume "0 < y"
  obtain N :: nat where "y < real N * (norm x - 1)"
    by (meson diff_gt_0_iff_gt reals_Archimedean3 x)
  also have "  real N * (norm x - 1) + 1"
    by simp
  also have "  (norm x - 1 + 1) ^ N"
    by (rule linear_plus_1_le_power) simp
  also have " = norm x ^ N"
    by simp
  finally have "nN. y  norm x ^ n"
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
  then show "eventually (λn. y  norm (x ^ n)) sequentially"
    unfolding eventually_sequentially
    by (auto simp: norm_power)
qed simp


lemma filterlim_divide_at_infinity:
  fixes f g :: "'a  'a :: real_normed_field"
  assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c  0"
  shows   "filterlim (λx. f x / g x) at_infinity F"
proof -
  have "filterlim (λx. f x * inverse (g x)) at_infinity F"
    by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)]
          filterlim_compose [OF filterlim_inverse_at_infinity assms(2)])
  thus ?thesis by (simp add: field_simps)
qed

subsection ‹Floor and Ceiling›

lemma eventually_floor_less:
  fixes f :: "'a  'b::{order_topology,floor_ceiling}"
  assumes f: "(f  l) F"
    and l: "l  "
  shows "F x in F. of_int (floor l) < f x"
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)

lemma eventually_less_ceiling:
  fixes f :: "'a  'b::{order_topology,floor_ceiling}"
  assumes f: "(f  l) F"
    and l: "l  "
  shows "F x in F. f x < of_int (ceiling l)"
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)

lemma eventually_floor_eq:
  fixes f::"'a  'b::{order_topology,floor_ceiling}"
  assumes f: "(f  l) F"
    and l: "l  "
  shows "F x in F. floor (f x) = floor l"
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)

lemma eventually_ceiling_eq:
  fixes f::"'a  'b::{order_topology,floor_ceiling}"
  assumes f: "(f  l) F"
    and l: "l  "
  shows "F x in F. ceiling (f x) = ceiling l"
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)

lemma tendsto_of_int_floor:
  fixes f::"'a  'b::{order_topology,floor_ceiling}"
  assumes "(f  l) F"
    and "l  "
  shows "((λx. of_int (floor (f x)) :: 'c::{ring_1,topological_space})  of_int (floor l)) F"
  using eventually_floor_eq[OF assms]
  by (simp add: eventually_mono topological_tendstoI)

lemma tendsto_of_int_ceiling:
  fixes f::"'a  'b::{order_topology,floor_ceiling}"
  assumes "(f  l) F"
    and "l  "
  shows "((λx. of_int (ceiling (f x)):: 'c::{ring_1,topological_space})  of_int (ceiling l)) F"
  using eventually_ceiling_eq[OF assms]
  by (simp add: eventually_mono topological_tendstoI)

lemma continuous_on_of_int_floor:
  "continuous_on (UNIV - ::'a::{order_topology, floor_ceiling} set)
    (λx. of_int (floor x)::'b::{ring_1, topological_space})"
  unfolding continuous_on_def
  by (auto intro!: tendsto_of_int_floor)

lemma continuous_on_of_int_ceiling:
  "continuous_on (UNIV - ::'a::{order_topology, floor_ceiling} set)
    (λx. of_int (ceiling x)::'b::{ring_1, topological_space})"
  unfolding continuous_on_def
  by (auto intro!: tendsto_of_int_ceiling)


subsection ‹Limits of Sequences›

lemma [trans]: "X = Y  Y  z  X  z"
  by simp

lemma LIMSEQ_iff:
  fixes L :: "'a::real_normed_vector"
  shows "(X  L) = (r>0. no. n  no. norm (X n - L) < r)"
unfolding lim_sequentially dist_norm ..

lemma LIMSEQ_I: "(r. 0 < r  no. nno. norm (X n - L) < r)  X  L"
  for L :: "'a::real_normed_vector"
  by (simp add: LIMSEQ_iff)

lemma LIMSEQ_D: "X  L  0 < r  no. nno. norm (X n - L) < r"
  for L :: "'a::real_normed_vector"
  by (simp add: LIMSEQ_iff)

lemma LIMSEQ_linear: "X  x  l > 0  (λ n. X (n * l))  x"
  unfolding tendsto_def eventually_sequentially
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)


text ‹Transformation of limit.›

lemma Lim_transform: "(g  a) F  ((λx. f x - g x)  0) F  (f  a) F"
  for a b :: "'a::real_normed_vector"
  using tendsto_add [of g a F "λx. f x - g x" 0] by simp

lemma Lim_transform2: "(f  a) F  ((λx. f x - g x)  0) F  (g  a) F"
  for a b :: "'a::real_normed_vector"
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)

proposition Lim_transform_eq: "((λx. f x - g x)  0) F  (f  a) F  (g  a) F"
  for a :: "'a::real_normed_vector"
  using Lim_transform Lim_transform2 by blast

lemma Lim_transform_eventually:
  "(f  l) F; eventually (λx. f x = g x) F  (g  l) F"
  using eventually_elim2 by (fastforce simp add: tendsto_def)

lemma Lim_transform_within:
  assumes "(f  l) (at x within S)"
    and "0 < d"
    and "x'. x'S  0 < dist x' x  dist x' x < d  f x' = g x'"
  shows "(g  l) (at x within S)"
proof (rule Lim_transform_eventually)
  show "eventually (λx. f x = g x) (at x within S)"
    using assms by (auto simp: eventually_at)
  show "(f  l) (at x within S)"
    by fact
qed

lemma filterlim_transform_within:
  assumes "filterlim g G (at x within S)"
  assumes "G  F" "0<d" "(x'. x'  S  0 < dist x' x  dist x' x < d  f x' = g x') "
  shows "filterlim f F (at x within S)"
  using assms
  apply (elim filterlim_mono_eventually)
  unfolding eventually_at by auto

text ‹Common case assuming being away from some crucial point like 0.›
lemma Lim_transform_away_within:
  fixes a b :: "'a::t1_space"
  assumes "a  b"
    and "xS. x  a  x  b  f x = g x"
    and "(f  l) (at a within S)"
  shows "(g  l) (at a within S)"
proof (rule Lim_transform_eventually)
  show "(f  l) (at a within S)"
    by fact
  show "eventually (λx. f x = g x) (at a within S)"
    unfolding eventually_at_topological
    by (rule exI [where x="- {b}"]) (simp add: open_Compl assms)
qed

lemma Lim_transform_away_at:
  fixes a b :: "'a::t1_space"
  assumes ab: "a  b"
    and fg: "x. x  a  x  b  f x = g x"
    and fl: "(f  l) (at a)"
  shows "(g  l) (at a)"
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp

text ‹Alternatively, within an open set.›
lemma Lim_transform_within_open:
  assumes "(f  l) (at a within T)"
    and "open s" and "a  s"
    and "x. xs  x  a  f x = g x"
  shows "(g  l) (at a within T)"
proof (rule Lim_transform_eventually)
  show "eventually (λx. f x = g x) (at a within T)"
    unfolding eventually_at_topological
    using assms by auto
  show "(f  l) (at a within T)" by fact
qed


text ‹A congruence rule allowing us to transform limits assuming not at point.›

lemma Lim_cong_within:
  assumes "a = b"
    and "x = y"
    and "S = T"
    and "x. x  b  x  T  f x = g x"
  shows "(f  x) (at a within S)  (g  y) (at b within T)"
  unfolding tendsto_def eventually_at_topological
  using assms by simp

text ‹An unbounded sequence's inverse tends to 0.›
lemma LIMSEQ_inverse_zero:
  assumes "r::real. N. nN. r < X n"
  shows "(λn. inverse (X n))  0"
  apply (rule filterlim_compose[OF tendsto_inverse_0])
  by (metis assms eventually_at_top_linorderI filterlim_at_top_dense filterlim_at_top_imp_at_infinity)

text ‹The sequence term1/n tends to 0 as termn tends to infinity.›
lemma LIMSEQ_inverse_real_of_nat: "(λn. inverse (real (Suc n)))  0"
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
      filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)

text ‹
  The sequence termr + 1/n tends to termr as termn tends to
  infinity is now easily proved.
›

lemma LIMSEQ_inverse_real_of_nat_add: "(λn. r + inverse (real (Suc n)))  r"
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto

lemma LIMSEQ_inverse_real_of_nat_add_minus: "(λn. r + -inverse (real (Suc n)))  r"
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
  by auto

lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(λn. r * (1 + - inverse (real (Suc n))))  r"
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
  by auto

lemma lim_inverse_n: "((λn. inverse(of_nat n))  (0::'a::real_normed_field)) sequentially"
  using lim_1_over_n by (simp add: inverse_eq_divide)

lemma lim_inverse_n': "((λn. 1 / n)  0) sequentially"
  using lim_inverse_n
  by (simp add: inverse_eq_divide)

lemma LIMSEQ_Suc_n_over_n: "(λn. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field)  1"
proof (rule Lim_transform_eventually)
  show "eventually (λn. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
    using eventually_gt_at_top[of "0::nat"]
    by eventually_elim (simp add: field_simps)
  have "(λn. 1 + inverse (of_nat n) :: 'a)  1 + 0"
    by (intro tendsto_add tendsto_const lim_inverse_n)
  then show "(λn. 1 + inverse (of_nat n) :: 'a)  1"
    by simp
qed

lemma LIMSEQ_n_over_Suc_n: "(λn. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field)  1"
proof (rule Lim_transform_eventually)
  show "eventually (λn. inverse (of_nat (Suc n) / of_nat n :: 'a) =
      of_nat n / of_nat (Suc n)) sequentially"
    using eventually_gt_at_top[of "0::nat"]
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
  have "(λn. inverse (of_nat (Suc n) / of_nat n :: 'a))  inverse 1"
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
  then show "(λn. inverse (of_nat (Suc n) / of_nat n :: 'a))  1"
    by simp
qed


subsection ‹Convergence on sequences›

lemma convergent_cong:
  assumes "eventually (λx. f x = g x) sequentially"
  shows "convergent f  convergent g"
  unfolding convergent_def
  by (subst filterlim_cong[OF refl refl assms]) (rule refl)

lemma convergent_Suc_iff: "convergent (λn. f (Suc n))  convergent f"
  by (auto simp: convergent_def filterlim_sequentially_Suc)

lemma convergent_ignore_initial_segment: "convergent (λn. f (n + m)) = convergent f"
proof (induct m arbitrary: f)
  case 0
  then show ?case by simp
next
  case (Suc m)
  have "convergent (λn. f (n + Suc m))  convergent (λn. f (Suc n + m))"
    by simp
  also have "  convergent (λn. f (n + m))"
    by (rule convergent_Suc_iff)
  also have "  convergent f"
    by (rule Suc)
  finally show ?case .
qed

lemma convergent_add:
  fixes X Y :: "nat  'a::topological_monoid_add"
  assumes "convergent (λn. X n)"
    and "convergent (λn. Y n)"
  shows "convergent (λn. X n + Y n)"
  using assms unfolding convergent_def by (blast intro: tendsto_add)

lemma convergent_sum:
  fixes X :: "'a  nat  'b::topological_comm_monoid_add"
  shows "(i. i  A  convergent (λn. X i n))  convergent (λn. iA. X i n)"
  by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add)

lemma (in bounded_linear) convergent:
  assumes "convergent (λn. X n)"
  shows "convergent (λn. f (X n))"
  using assms unfolding convergent_def by (blast intro: tendsto)

lemma (in bounded_bilinear) convergent:
  assumes "convergent (λn. X n)"
    and "convergent (λn. Y n)"
  shows "convergent (λn. X n ** Y n)"
  using assms unfolding convergent_def by (blast intro: tendsto)

lemma convergent_minus_iff:
  fixes X :: "nat  'a::topological_group_add"
  shows "convergent X  convergent (λn. - X n)"
  unfolding convergent_def by (force dest: tendsto_minus)

lemma convergent_diff:
  fixes X Y :: "nat  'a::topological_group_add"
  assumes "convergent (λn. X n)"
  assumes "convergent (λn. Y n)"
  shows "convergent (λn. X n - Y n)"
  using assms unfolding convergent_def by (blast intro: tendsto_diff)

lemma convergent_norm:
  assumes "convergent f"
  shows "convergent (λn. norm (f n))"
proof -
  from assms have "f  lim f"
    by (simp add: convergent_LIMSEQ_iff)
  then have "(λn. norm (f n))  norm (lim f)"
    by (rule tendsto_norm)
  then show ?thesis
    by (auto simp: convergent_def)
qed

lemma convergent_of_real:
  "convergent f  convergent (λn. of_real (f n) :: 'a::real_normed_algebra_1)"
  unfolding convergent_def by (blast intro!: tendsto_of_real)

lemma convergent_add_const_iff:
  "convergent (λn. c + f n :: 'a::topological_ab_group_add)  convergent f"
proof
  assume "convergent (λn. c + f n)"
  from convergent_diff[OF this convergent_const[of c]] show "convergent f"
    by simp
next
  assume "convergent f"
  from convergent_add[OF convergent_const[of c] this] show "convergent (λn. c + f n)"
    by simp
qed

lemma convergent_add_const_right_iff:
  "convergent (λn. f n + c :: 'a::topological_ab_group_add)  convergent f"
  using convergent_add_const_iff[of c f] by (simp add: add_ac)

lemma convergent_diff_const_right_iff:
  "convergent (λn. f n - c :: 'a::topological_ab_group_add)  convergent f"
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)

lemma convergent_mult:
  fixes X Y :: "nat  'a::topological_semigroup_mult"
  assumes "convergent (λn. X n)"
    and "convergent (λn. Y n)"
  shows "convergent (λn. X n * Y n)"
  using assms unfolding convergent_def by (blast intro: tendsto_mult)

lemma convergent_mult_const_iff:
  assumes "c  0"
  shows "convergent (λn. c * f n :: 'a::{field,topological_semigroup_mult})  convergent f"
proof
  assume "convergent (λn. c * f n)"
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
    show "convergent f" by (simp add: field_simps)
next
  assume "convergent f"
  from convergent_mult[OF convergent_const[of c] this] show "convergent (λn. c * f n)"
    by simp
qed

lemma convergent_mult_const_right_iff:
  fixes c :: "'a::{field,topological_semigroup_mult}"
  assumes "c  0"
  shows "convergent (λn. f n * c)  convergent f"
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)

lemma convergent_imp_Bseq: "convergent f  Bseq f"
  by (simp add: Cauchy_Bseq convergent_Cauchy)


text ‹A monotone sequence converges to its least upper bound.›

lemma LIMSEQ_incseq_SUP:
  fixes X :: "nat  'a::{conditionally_complete_linorder,linorder_topology}"
  assumes u: "bdd_above (range X)"
    and X: "incseq X"
  shows "X  (SUP i. X i)"
  by (rule order_tendstoI)
    (auto simp: eventually_sequentially u less_cSUP_iff
      intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])

lemma LIMSEQ_decseq_INF:
  fixes X :: "nat  'a::{conditionally_complete_linorder, linorder_topology}"
  assumes u: "bdd_below (range X)"
    and X: "decseq X"
  shows "X  (INF i. X i)"
  by (rule order_tendstoI)
     (auto simp: eventually_sequentially u cINF_less_iff
       intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])

text ‹Main monotonicity theorem.›

lemma Bseq_monoseq_convergent: "Bseq X  monoseq X  convergent X"
  for X :: "nat  real"
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP
      dest: Bseq_bdd_above Bseq_bdd_below)

lemma Bseq_mono_convergent: "Bseq X  (m n. m  n  X m  X n)  convergent X"
  for X :: "nat  real"
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)

lemma monoseq_imp_convergent_iff_Bseq: "monoseq f  convergent f  Bseq f"
  for f :: "nat  real"
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast

lemma Bseq_monoseq_convergent'_inc:
  fixes f :: "nat  real"
  shows "Bseq (λn. f (n + M))  (m n. M  m  m  n  f m  f n)  convergent f"
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)

lemma Bseq_monoseq_convergent'_dec:
  fixes f :: "nat  real"
  shows "Bseq (λn. f (n + M))  (m n. M  m  m  n  f m  f n)  convergent f"
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
    (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)

lemma Cauchy_iff: "Cauchy X  (e>0. M. mM. nM. norm (X m - X n) < e)"
  for X :: "nat  'a::real_normed_vector"
  unfolding Cauchy_def dist_norm ..

lemma CauchyI: "(e. 0 < e  M. mM. nM. norm (X m - X n) < e)  Cauchy X"
  for X :: "nat  'a::real_normed_vector"
  by (simp add: Cauchy_iff)

lemma CauchyD: "Cauchy X  0 < e  M. mM. nM. norm (X m - X n) < e"
  for X :: "nat  'a::real_normed_vector"
  by (simp add: Cauchy_iff)

lemma incseq_convergent:
  fixes X :: "nat  real"
  assumes "incseq X"
    and "i. X i  B"
  obtains L where "X  L" "i. X i  L"
proof atomize_elim
  from incseq_bounded[OF assms] incseq X Bseq_monoseq_convergent[of X]
  obtain L where "X  L"
    by (auto simp: convergent_def monoseq_def incseq_def)
  with incseq X show "L. X  L  (i. X i  L)"
    by (auto intro!: exI[of _ L] incseq_le)
qed

lemma decseq_convergent:
  fixes X :: "nat  real"
  assumes "decseq X"
    and "i. B  X i"
  obtains L where "X  L" "i. L  X i"
proof atomize_elim
  from decseq_bounded[OF assms] decseq X Bseq_monoseq_convergent[of X]
  obtain L where "X  L"
    by (auto simp: convergent_def monoseq_def decseq_def)
  with decseq X show "L. X  L  (i. L  X i)"
    by (auto intro!: exI[of _ L] decseq_ge)
qed

lemma monoseq_convergent:
  fixes X :: "nat  real"
  assumes X: "monoseq X" and B: "i. ¦X i¦  B"
  obtains L where "X  L"
  using X unfolding monoseq_iff
proof
  assume "incseq X"
  show thesis
    using abs_le_D1 [OF B] incseq_convergent [OF incseq X] that by meson
next
  assume "decseq X"
  show thesis
    using decseq_convergent [OF decseq X] that
    by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le)
qed

subsection ‹More about @{term filterlim} (thanks to Wenda Li)›

lemma filterlim_at_infinity_times:
  fixes f :: "'a  'b::real_normed_field"
  assumes "filterlim f at_infinity F" "filterlim g at_infinity F"
  shows "filterlim (λx. f x * g x) at_infinity F"  
proof -
  have "((λx. inverse (f x) * inverse (g x))  0 * 0) F"
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
  then have "filterlim (λx. inverse (f x) * inverse (g x)) (at 0) F"
    unfolding filterlim_at using assms
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
  then show ?thesis
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
qed   
  
lemma filterlim_at_top_at_bot[elim]:
  fixes f::"'a  'b::unbounded_dense_linorder" and F::"'a filter"
  assumes top:"filterlim f at_top F" and bot: "filterlim f at_bot F" and "Fbot"
  shows False
proof -
  obtain c::'b where True by auto
  have "F x in F. c < f x" 
    using top unfolding filterlim_at_top_dense by auto
  moreover have "F x in F. f x < c" 
    using bot unfolding filterlim_at_bot_dense by auto
  ultimately have "F x in F. c < f x  f x < c" 
    using eventually_conj by auto
  then have "F x in F. False" by (auto elim:eventually_mono)
  then show False using Fbot by auto
qed  

lemma filterlim_at_top_nhds[elim]:      
  fixes f::"'a  'b::{unbounded_dense_linorder,order_topology}" and F::"'a filter"
  assumes top:"filterlim f at_top F" and tendsto: "(f  c) F" and "Fbot"
  shows False
proof -
  obtain c'::'b where "c'>c" using gt_ex by blast
  have "F x in F. c' < f x" 
    using top unfolding filterlim_at_top_dense by auto
  moreover have "F x in F. f x < c'" 
    using order_tendstoD[OF tendsto,of c'] c'>c by auto
  ultimately have "F x in F. c' < f x  f x < c'" 
    using eventually_conj by auto
  then have "F x in F. False" by (auto elim:eventually_mono)
  then show False using Fbot by auto
qed

lemma filterlim_at_bot_nhds[elim]:      
  fixes f::"'a  'b::{unbounded_dense_linorder,order_topology}" and F::"'a filter"
  assumes top:"filterlim f at_bot F" and tendsto: "(f  c) F" and "Fbot"
  shows False
proof -
  obtain c'::'b where "c'<c" using lt_ex by blast
  have "F x in F. c' > f x" 
    using top unfolding filterlim_at_bot_dense by auto
  moreover have "F x in F. f x > c'" 
    using order_tendstoD[OF tendsto,of c'] c'<c by auto
  ultimately have "F x in F. c' < f x  f x < c'" 
    using eventually_conj by auto
  then have "F x in F. False" by (auto elim:eventually_mono)
  then show False using Fbot by auto
qed  

lemma eventually_times_inverse_1:
  fixes f::"'a  'b::{field,t2_space}"
  assumes "(f  c) F" "c0"
  shows "F x in F. inverse (f x) * f x = 1"
  by (smt (verit) assms eventually_mono mult.commute right_inverse tendsto_imp_eventually_ne)
  
lemma filterlim_at_infinity_divide_iff:
  fixes f::"'a  'b::real_normed_field"
  assumes "(f  c) F" "c0"
  shows "(LIM x F. f x / g x :> at_infinity)  (LIM x F. g x :> at 0)"
proof 
  assume "LIM x F. f x / g x :> at_infinity"
  then have "LIM x F. inverse (f x) * (f x / g x) :> at_infinity"
    using assms tendsto_inverse tendsto_mult_filterlim_at_infinity by fastforce
  then have "LIM x F. inverse (g x) :> at_infinity"
    apply (elim filterlim_mono_eventually)
    using eventually_times_inverse_1[OF assms] 
    by (auto elim:eventually_mono simp add:field_simps)
  then show "filterlim g (at 0) F" using filterlim_inverse_at_iff[symmetric] by force 
next
  assume "filterlim g (at 0) F" 
  then have "filterlim (λx. inverse (g x)) at_infinity F"
    using filterlim_compose filterlim_inverse_at_infinity by blast
  then have "LIM x F. f x * inverse (g x) :> at_infinity"
    using tendsto_mult_filterlim_at_infinity[OF assms, of "λx. inverse(g x)"] 
    by simp
  then show "LIM x F. f x / g x :> at_infinity" by (simp add: divide_inverse)
qed  

lemma filterlim_tendsto_pos_mult_at_top_iff:
  fixes f::"'a  real"
  assumes "(f  c) F" and "0 < c"
  shows "(LIM x F. (f x * g x) :> at_top)  (LIM x F. g x :> at_top)"
proof 
  assume "filterlim g at_top F"
  then show "LIM x F. f x * g x :> at_top" 
    using filterlim_tendsto_pos_mult_at_top[OF assms] by auto
next
  assume asm:"LIM x F. f x * g x :> at_top"
  have "((λx. inverse (f x))  inverse c) F" 
    using tendsto_inverse[OF assms(1)] 0<c by auto
  moreover have "inverse c >0" using assms(2) by auto
  ultimately have "LIM x F. inverse (f x) * (f x * g x) :> at_top"
    using filterlim_tendsto_pos_mult_at_top[OF _ _ asm,of "λx. inverse (f x)" "inverse c"] by auto
  then show "LIM x F. g x :> at_top"
    apply (elim filterlim_mono_eventually)
      apply simp_all[2]
    using eventually_times_inverse_1[OF assms(1)] c>0 eventually_mono by fastforce
qed  

lemma filterlim_tendsto_pos_mult_at_bot_iff:
  fixes c :: real
  assumes "(f  c) F" "0 < c" 
  shows "(LIM x F. f x * g x :> at_bot)  filterlim g at_bot F"
  using filterlim_tendsto_pos_mult_at_top_iff[OF assms(1,2), of "λx. - g x"] 
  unfolding filterlim_uminus_at_bot by simp    

lemma filterlim_tendsto_neg_mult_at_top_iff:
  fixes f::"'a  real"
  assumes "(f  c) F" and "c < 0"
  shows "(LIM x F. (f x * g x) :> at_top)  (LIM x F. g x :> at_bot)"  
proof -
  have "(LIM x F. f x * g x :> at_top) = (LIM x F. - g x :> at_top)"
    apply (rule filterlim_tendsto_pos_mult_at_top_iff[of "λx. - f x" "-c" F "λx. - g x", simplified])
    using assms by (auto intro: tendsto_intros )
  also have "... = (LIM x F. g x :> at_bot)" 
    using filterlim_uminus_at_bot[symmetric] by auto
  finally show ?thesis .
qed

lemma filterlim_tendsto_neg_mult_at_bot_iff:
  fixes c :: real
  assumes "(f  c) F" "0 > c" 
  shows "(LIM x F. f x * g x :> at_bot)  filterlim g at_top F"
  using filterlim_tendsto_neg_mult_at_top_iff[OF assms(1,2), of "λx. - g x"] 
  unfolding filterlim_uminus_at_top by simp    

subsection ‹Power Sequences›

lemma Bseq_realpow: "0  x  x  1  Bseq (λn. x ^ n)"
  for x :: real
  by (metis decseq_bounded decseq_def power_decreasing zero_le_power)

lemma monoseq_realpow: "0  x  x  1  monoseq (λn. x ^ n)"
  for x :: real
  using monoseq_def power_decreasing by blast

lemma convergent_realpow: "0  x  x  1  convergent (λn. x ^ n)"
  for x :: real
  by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)

lemma LIMSEQ_inverse_realpow_zero: "1 < x  (λn. inverse (x ^ n))  0"
  for x :: real
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp

lemma LIMSEQ_realpow_zero:
  fixes x :: real
  assumes "0  x" "x < 1"
  shows "(λn. x ^ n)  0"
proof (cases "x = 0")
  case False 
  with 0  x have "1 < inverse x"
    using x < 1 by (simp add: one_less_inverse)
  then have "(λn. inverse (inverse x ^ n))  0"
    by (rule LIMSEQ_inverse_realpow_zero)
  then show ?thesis by (simp add: power_inverse)
next
  case True
  show ?thesis
    by (rule LIMSEQ_imp_Suc) (simp add: True)
qed

lemma LIMSEQ_power_zero [tendsto_intros]: "norm x < 1  (λn. x ^ n)  0"
  for x :: "'a::real_normed_algebra_1"
  apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
  by (simp add: Zfun_le norm_power_ineq tendsto_Zfun_iff)

lemma LIMSEQ_divide_realpow_zero: "1 < x  (λn. a / (x ^ n) :: real)  0"
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp

lemma
  tendsto_power_zero:
  fixes x::"'a::real_normed_algebra_1"
  assumes "filterlim f at_top F"
  assumes "norm x < 1"
  shows "((λy. x ^ (f y))  0) F"
proof (rule tendstoI)
  fix e::real assume "0 < e"
  from tendstoD[OF LIMSEQ_power_zero[OF norm x < 1] 0 < e]
  have "F xa in sequentially. norm (x ^ xa) < e"
    by simp
  then obtain N where N: "norm (x ^ n) < e" if "n  N" for n
    by (auto simp: eventually_sequentially)
  have "F i in F. f i  N"
    using filterlim f sequentially F
    by (simp add: filterlim_at_top)
  then show "F i in F. dist (x ^ f i) 0 < e"
    by eventually_elim (auto simp: N)
qed

text ‹Limit of termc^n for term¦c¦ < 1.›

lemma LIMSEQ_abs_realpow_zero: "¦c¦ < 1  (λn. ¦c¦ ^ n :: real)  0"
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])

lemma LIMSEQ_abs_realpow_zero2: "¦c¦ < 1  (λn. c ^ n :: real)  0"
  by (rule LIMSEQ_power_zero) simp


subsection ‹Limits of Functions›

lemma LIM_eq: "f a L = (r>0. s>0. x. x  a  norm (x - a) < s  norm (f x - L) < r)"
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
  by (simp add: LIM_def dist_norm)

lemma LIM_I:
  "(r. 0 < r  s>0. x. x  a  norm (x - a) < s  norm (f x - L) < r)  f a L"
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
  by (simp add: LIM_eq)

lemma LIM_D: "f a L  0 < r  s>0.x. x  a  norm (x - a) < s  norm (f x - L) < r"
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
  by (simp add: LIM_eq)

lemma LIM_offset: "f a L  (λx. f (x + k)) (a - k) L"
  for a :: "'a::real_normed_vector"
  by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap)

lemma LIM_offset_zero: "f a L  (λh. f (a + h)) 0 L"
  for a :: "'a::real_normed_vector"
  by (drule LIM_offset [where k = a]) (simp add: add.commute)

lemma LIM_offset_zero_cancel: "(λh. f (a + h)) 0 L  f a L"
  for a :: "'a::real_normed_vector"
  by (drule LIM_offset [where k = "- a"]) simp

lemma LIM_offset_zero_iff: "NO_MATCH 0 a  f a L  (λh. f (a + h)) 0 L"
  for f :: "'a :: real_normed_vector  _"
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto

lemma tendsto_offset_zero_iff:
  fixes f :: "'a :: real_normed_vector  _"
  assumes " NO_MATCH 0 a" "a  S" "open S"
  shows "(f  L) (at a within S)  ((λh. f (a + h))  L) (at 0)"
  using assms by (simp add: tendsto_within_open_NO_MATCH LIM_offset_zero_iff)

lemma LIM_zero: "(f  l) F  ((λx. f x - l)  0) F"
  for f :: "'a  'b::real_normed_vector"
  unfolding tendsto_iff dist_norm by simp

lemma LIM_zero_cancel:
  fixes f :: "'a  'b::real_normed_vector"
  shows "((λx. f x - l)  0) F  (f  l) F"
unfolding tendsto_iff dist_norm by simp

lemma LIM_zero_iff: "((λx. f x - l)  0) F = (f  l) F"
  for f :: "'a  'b::real_normed_vector"
  unfolding tendsto_iff dist_norm by simp

lemma LIM_imp_LIM:
  fixes f :: "'a::topological_space  'b::real_normed_vector"
  fixes g :: "'a::topological_space  'c::real_normed_vector"
  assumes f: "f a l"
    and le: "x. x  a  norm (g x - m)  norm (f x - l)"
  shows "g a m"
  by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le)

lemma LIM_equal2:
  fixes f g :: "'a::real_normed_vector  'b::topological_space"
  assumes "0 < R"
    and "x. x  a  norm (x - a) < R  f x = g x"
  shows "g a l  f a l"
  by (rule metric_LIM_equal2 [OF _ assms]) (simp_all add: dist_norm)

lemma LIM_compose2:
  fixes a :: "'a::real_normed_vector"
  assumes f: "f a b"
    and g: "g b c"
    and inj: "d>0. x. x  a  norm (x - a) < d  f x  b"
  shows "(λx. g (f x)) a c"
  by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])

lemma real_LIM_sandwich_zero:
  fixes f g :: "'a::topological_space  real"
  assumes f: "f a 0"
    and 1: "x. x  a  0  g x"
    and 2: "x. x  a  g x  f x"
  shows "g a 0"
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
  fix x
  assume x: "x  a"
  with 1 have "norm (g x - 0) = g x" by simp
  also have "g x  f x" by (rule 2 [OF x])
  also have "f x  ¦f x¦" by (rule abs_ge_self)
  also have "¦f x¦ = norm (f x - 0)" by simp
  finally show "norm (g x - 0)  norm (f x - 0)" .
qed


subsection ‹Continuity›

lemma LIM_isCont_iff: "(f a f a) = ((λh. f (a + h)) 0 f a)"
  for f :: "'a::real_normed_vector  'b::topological_space"
  by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])

lemma isCont_iff: "isCont f x = (λh. f (x + h)) 0 f x"
  for f :: "'a::real_normed_vector  'b::topological_space"
  by (simp add: isCont_def LIM_isCont_iff)

lemma isCont_LIM_compose2:
  fixes a :: "'a::real_normed_vector"
  assumes f [unfolded isCont_def]: "isCont f a"
    and g: "g f a l"
    and inj: "d>0. x. x  a  norm (x - a) < d  f x  f a"
  shows "(λx. g (f x)) a l"
  by (rule LIM_compose2 [OF f g inj])

lemma isCont_norm [simp]: "isCont f a  isCont (λx. norm (f x)) a"
  for f :: "'a::t2_space  'b::real_normed_vector"
  by (fact continuous_norm)

lemma isCont_rabs [simp]: "isCont f a  isCont (λx. ¦f x¦) a"
  for f :: "'a::t2_space  real"
  by (fact continuous_rabs)

lemma isCont_add [simp]: "isCont f a  isCont g a  isCont (λx. f x + g x) a"
  for f :: "'a::t2_space  'b::topological_monoid_add"
  by (fact continuous_add)

lemma isCont_minus [simp]: "isCont f a  isCont (λx. - f x) a"
  for f :: "'a::t2_space  'b::real_normed_vector"
  by (fact continuous_minus)

lemma isCont_diff [simp]: "isCont f a  isCont g a  isCont (λx. f x - g x) a"
  for f :: "'a::t2_space  'b::real_normed_vector"
  by (fact continuous_diff)

lemma isCont_mult [simp]: "isCont f a  isCont g a  isCont (λx. f x * g x) a"
  for f g :: "'a::t2_space  'b::real_normed_algebra"
  by (fact continuous_mult)

lemma (in bounded_linear) isCont: "isCont g a  isCont (λx. f (g x)) a"
  by (fact continuous)

lemma (in bounded_bilinear) isCont: "isCont f a  isCont g a  isCont (λx. f x ** g x) a"
  by (fact continuous)

lemmas isCont_scaleR [simp] =
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]

lemmas isCont_of_real [simp] =
  bounded_linear.isCont [OF bounded_linear_of_real]

lemma isCont_power [simp]: "isCont f a  isCont (λx. f x ^ n) a"
  for f :: "'a::t2_space  'b::{power,real_normed_algebra}"
  by (fact continuous_power)

lemma isCont_sum [simp]: "iA. isCont (f i) a  isCont (λx. iA. f i x) a"
  for f :: "'a  'b::t2_space  'c::topological_comm_monoid_add"
  by (auto intro: continuous_sum)


subsection ‹Uniform Continuity›

lemma uniformly_continuous_on_def:
  fixes f :: "'a::metric_space  'b::metric_space"
  shows "uniformly_continuous_on s f 
    (e>0. d>0. xs. x's. dist x' x < d  dist (f x') (f x) < e)"
  unfolding uniformly_continuous_on_uniformity
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)

abbreviation isUCont :: "['a::metric_space  'b::metric_space]  bool"
  where "isUCont f  uniformly_continuous_on UNIV f"

lemma isUCont_def: "isUCont f  (r>0. s>0. x y. dist x y < s  dist (f x) (f y) < r)"
  by (auto simp: uniformly_continuous_on_def dist_commute)

lemma isUCont_isCont: "isUCont f  isCont f x"
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)

lemma uniformly_continuous_on_Cauchy:
  fixes f :: "'a::metric_space  'b::metric_space"
  assumes "uniformly_continuous_on S f" "Cauchy X" "n. X n  S"
  shows "Cauchy (λn. f (X n))"
  using assms
  unfolding uniformly_continuous_on_def  by (meson Cauchy_def)

lemma isUCont_Cauchy: "isUCont f  Cauchy X  Cauchy (λn. f (X n))"
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all

lemma (in bounded_linear) isUCont: "isUCont f"
  unfolding isUCont_def dist_norm
proof (intro allI impI)
  fix r :: real
  assume r: "0 < r"
  obtain K where K: "0 < K" and norm_le: "norm (f x)  norm x * K" for x
    using pos_bounded by blast
  show "s>0. x y. norm (x - y) < s  norm (f x - f y) < r"
  proof (rule exI, safe)
    from r K show "0 < r / K" by simp
  next
    fix x y :: 'a
    assume xy: "norm (x - y) < r / K"
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
    also have "  norm (x - y) * K" by (rule norm_le)
    also from K xy have " < r" by (simp only: pos_less_divide_eq)
    finally show "norm (f x - f y) < r" .
  qed
qed

lemma (in bounded_linear) Cauchy: "Cauchy X  Cauchy (λn. f (X n))"
  by (rule isUCont [THEN isUCont_Cauchy])

lemma LIM_less_bound:
  fixes f :: "real  real"
  assumes ev: "b < x" " x'  { b <..< x}. 0  f x'" and "isCont f x"
  shows "0  f x"
proof (rule tendsto_lowerbound)
  show "(f  f x) (at_left x)"
    using isCont f x by (simp add: filterlim_at_split isCont_def)
  show "eventually (λx. 0  f x) (at_left x)"
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
qed simp


subsection ‹Nested Intervals and Bisection -- Needed for Compactness›

lemma nested_sequence_unique:
  assumes "n. f n  f (Suc n)" "n. g (Suc n)  g n" "n. f n  g n" "(λn. f n - g n)  0"
  shows "l::real. ((n. f n  l)  f  l)  ((n. l  g n)  g  l)"
proof -
  have "incseq f" unfolding incseq_Suc_iff by fact
  have "decseq g" unfolding decseq_Suc_iff by fact
  have "f n  g 0" for n
  proof -
    from decseq g have "g n  g 0"
      by (rule decseqD) simp
    with n. f n  g n[THEN spec, of n] show ?thesis
      by auto
  qed
  then obtain u where "f  u" "i. f i  u"
    using incseq_convergent[OF incseq f] by auto
  moreover have "f 0  g n" for n
  proof -
    from incseq f have "f 0  f n" by (rule incseqD) simp
    with n. f n  g n[THEN spec, of n] show ?thesis
      by simp
  qed
  then obtain l where "g  l" "i. l  g i"
    using decseq_convergent[OF decseq g] by auto
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF f  u g  l]]
  ultimately show ?thesis by auto
qed

lemma Bolzano[consumes 1, case_names trans local]:
  fixes P :: "real  real  bool"
  assumes [arith]: "a  b"
    and trans: "a b c. P a b  P b c  a  b  b  c  P a c"
    and local: "x. a  x  x  b  d>0. a b. a  x  x  b  b - a < d  P a b"
  shows "P a b"
proof -
  define bisect where "bisect  λ(x,y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2)"
  define l u where "l n  fst ((bisect^^n)(a,b))" and "u n  snd ((bisect^^n)(a,b))" for n
  have l[simp]: "l 0 = a" "n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
    and u[simp]: "u 0 = b" "n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
    by (simp_all add: l_def u_def bisect_def split: prod.split)

  have [simp]: "l n  u n" for n by (induct n) auto

  have "x. ((n. l n  x)  l  x)  ((n. x  u n)  u  x)"
  proof (safe intro!: nested_sequence_unique)
    show "l n  l (Suc n)" "u (Suc n)  u n" for n
      by (induct n) auto
  next
    have "l n - u n = (a - b) / 2^n" for n
      by (induct n) (auto simp: field_simps)
    then show "(λn. l n - u n)  0"
      by (simp add: LIMSEQ_divide_realpow_zero)
  qed fact
  then obtain x where x: "n. l n  x" "n. x  u n" and "l  x" "u  x"
    by auto
  obtain d where "0 < d" and d: "a  x  x  b  b - a < d  P a b" for a b
    using l 0  x x  u 0 local[of x] by auto

  show "P a b"
  proof (rule ccontr)
    assume "¬ P a b"
    have "¬ P (l n) (u n)" for n
    proof (induct n)
      case 0
      then show ?case
        by (simp add: ¬ P a b)
    next
      case (Suc n)
      with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case
        by auto
    qed
    moreover
    {
      have "eventually (λn. x - d / 2 < l n) sequentially"
        using 0 < d l  x by (intro order_tendstoD[of _ x]) auto
      moreover have "eventually (λn. u n < x + d / 2) sequentially"
        using 0 < d u  x by (intro order_tendstoD[of _ x]) auto
      ultimately have "eventually (λn. P (l n) (u n)) sequentially"
      proof eventually_elim
        case (elim n)
        from add_strict_mono[OF this] have "u n - l n < d" by simp
        with x show "P (l n) (u n)" by (rule d)
      qed
    }
    ultimately show False by simp
  qed
qed

lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
proof (cases "a  b", rule compactI)
  fix C
  assume C: "a  b" "tC. open t" "{a..b}  C"
  define T where "T = {a .. b}"
  from C(1,3) show "C'C. finite C'  {a..b}  C'"
  proof (induct rule: Bolzano)
    case (trans a b c)
    then have *: "{a..c} = {a..b}  {b..c}"
      by auto
    with trans obtain C1 C2
      where "C1C" "finite C1" "{a..b}  C1" "C2C" "finite C2" "{b..c}  C2"
      by auto
    with trans show ?case
      unfolding * by (intro exI[of _ "C1  C2"]) auto
  next
    case (local x)
    with C have "x  C" by auto
    with C(2) obtain c where "x  c" "open c" "c  C"
      by auto
    then obtain e where "0 < e" "{x - e <..< x + e}  c"
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
    with c  C show ?case
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
  qed
qed simp


lemma continuous_image_closed_interval:
  fixes a b and f :: "real  real"
  defines "S  {a..b}"
  assumes "a  b" and f: "continuous_on S f"
  shows "c d. f`S = {c..d}  c  d"
proof -
  have S: "compact S" "S  {}"
    using a  b by (auto simp: S_def)
  obtain c where "c  S" "dS. f d  f c"
    using continuous_attains_sup[OF S f] by auto
  moreover obtain d where "d  S" "cS. f d  f c"
    using continuous_attains_inf[OF S f] by auto
  moreover have "connected (f`S)"
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
  ultimately have "f ` S = {f d .. f c}  f d  f c"
    by (auto simp: connected_iff_interval)
  then show ?thesis
    by auto
qed

lemma open_Collect_positive:
  fixes f :: "'a::topological_space  real"
  assumes f: "continuous_on s f"
  shows "A. open A  A  s = {xs. 0 < f x}"
  using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
  by (auto simp: Int_def field_simps)

lemma open_Collect_less_Int:
  fixes f g :: "'a::topological_space  real"
  assumes f: "continuous_on s f"
    and g: "continuous_on s g"
  shows "A. open A  A  s = {xs. f x < g x}"
  using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)


subsection ‹Boundedness of continuous functions›

text‹By bisection, function continuous on closed interval is bounded above›

lemma isCont_eq_Ub:
  fixes f :: "real  'a::linorder_topology"
  shows "a  b  x::real. a  x  x  b  isCont f x 
    M. (x. a  x  x  b  f x  M)  (x. a  x  x  b  f x = M)"
  using continuous_attains_sup[of "{a..b}" f]
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)

lemma isCont_eq_Lb:
  fixes f :: "real  'a::linorder_topology"
  shows "a  b  x. a  x  x  b  isCont f x 
    M. (x. a  x  x  b  M  f x)  (x. a  x  x  b  f x = M)"
  using continuous_attains_inf[of "{a..b}" f]
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)

lemma isCont_bounded:
  fixes f :: "real  'a::linorder_topology"
  shows "a  b  x. a  x  x  b  isCont f x  M. x. a  x  x  b  f x  M"
  using isCont_eq_Ub[of a b f] by auto

lemma isCont_has_Ub:
  fixes f :: "real  'a::linorder_topology"
  shows "a  b  x. a  x  x  b  isCont f x 
    M. (x. a  x  x  b  f x  M)  (N. N < M  (x. a  x  x  b  N < f x))"
  using isCont_eq_Ub[of a b f] by auto

lemma isCont_Lb_Ub:
  fixes f :: "real  real"
  assumes "a  b" "x. a  x  x  b  isCont f x"
  shows "L M. (x. a  x  x  b  L  f x  f x  M) 
    (y. L  y  y  M  (x. a  x  x  b  (f x = y)))"
proof -
  obtain M where M: "a  M" "M  b" "x. a  x  x  b  f x  f M"
    using isCont_eq_Ub[OF assms] by auto
  obtain L where L: "a  L" "L  b" "x. a  x  x  b  f L  f x"
    using isCont_eq_Lb[OF assms] by auto
  have "(x. a  x  x  b  f L  f x  f x  f M)"
    using M L by simp
  moreover
  have "(y. f L  y  y  f M  (xa. x  b  f x = y))"
  proof (cases "L  M")
    case True then show ?thesis
    using IVT[of f L _ M] M L assms by (metis order.trans)
  next
    case False then show ?thesis
    using IVT2[of f L _ M]
    by (metis L(2) M(1) assms(2) le_cases order.trans)
qed
  ultimately show ?thesis
    by blast
qed


text ‹Continuity of inverse function.›

lemma isCont_inverse_function:
  fixes f g :: "real  real"
  assumes d: "0 < d"
    and inj: "z. ¦z-x¦  d  g (f z) = z"
    and cont: "z. ¦z-x¦  d  isCont f z"
  shows "isCont g (f x)"
proof -
  let ?A = "f (x - d)"
  let ?B = "f (x + d)"
  let ?D = "{x - d..x + d}"

  have f: "continuous_on ?D f"
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
  then have g: "continuous_on (f`?D) g"
    using inj by (intro continuous_on_inv) auto

  from d f have "{min ?A ?B <..< max ?A ?B}  f ` ?D"
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
    by (rule continuous_on_subset)
  moreover
  have "(?A < f x  f x < ?B)  (?B < f x  f x < ?A)"
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
  then have "f x  {min ?A ?B <..< max ?A ?B}"
    by auto
  ultimately show ?thesis
    by (simp add: continuous_on_eq_continuous_at)
qed

lemma isCont_inverse_function2:
  fixes f g :: "real  real"
  shows
    "a < x; x < b;
      z. a  z; z  b  g (f z) = z;
      z. a  z; z  b  isCont f z  isCont g (f x)"
  apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])
  apply (simp_all add: abs_le_iff)
  done

text ‹Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.›
lemma LIM_fun_gt_zero: "f c l  0 < l  r. 0 < r  (x. x  c  ¦c - x¦ < r  0 < f x)"
  for f :: "real  real"
  by (force simp: dest: LIM_D)

lemma LIM_fun_less_zero: "f c l  l < 0  r. 0 < r  (x. x  c  ¦c - x¦ < r  f x < 0)"
  for f :: "real  real"
  by (drule LIM_D [where r="-l"]) force+

lemma LIM_fun_not_zero: "f c l  l  0  r. 0 < r  (x. x  c  ¦c - x¦ < r  f x  0)"
  for f :: "real  real"
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp: neq_iff)

lemma Lim_topological:
  "(f  l) net 
    trivial_limit net  (S. open S  l  S  eventually (λx. f x  S) net)"
  unfolding tendsto_def trivial_limit_eq by auto

lemma eventually_within_Un:
  "eventually P (at x within (s  t)) 
    eventually P (at x within s)  eventually P (at x within t)"
  unfolding eventually_at_filter
  by (auto elim!: eventually_rev_mp)

lemma Lim_within_Un:
 "(f  l) (at x within (s  t)) 
  (f  l) (at x within s)  (f  l) (at x within t)"
  unfolding tendsto_def
  by (auto simp: eventually_within_Un)

end