Function calling conventions and other conventions regarding the use of
machine registers and stack slots.
Require Import Coqlib.
Require Import Ast.
Require Import Locations.
Classification of machine registers
Machine registers (type
mreg in module
Locations) are divided in
the following groups:
-
Temporaries used for spilling, reloading, and parallel move operations.
-
Allocatable registers, that can be assigned to RTL pseudo-registers.
These are further divided into:
-
Callee-save registers, whose value is preserved across a function call.
-
Caller-save registers that can be modified during a function call.
Definition int_caller_save_regs :
list mreg :=
nil.
Definition float_caller_save_regs :=
rXMM0 ::
rXMM1 ::
rXMM2 ::
rXMM3 ::
rXMM4 ::
rXMM5 ::
nil.
Definition int_callee_save_regs :
list mreg :=
rEBX ::
rESI ::
rEDI ::
rEBP ::
nil.
Definition float_callee_save_regs :
list mreg :=
nil.
Definition destroyed_at_call_regs :=
int_caller_save_regs ++
float_caller_save_regs.
Definition destroyed_at_call :=
List.map R destroyed_at_call_regs.
Definition int_temporaries :=
IT1 ::
IT2 ::
rEAX ::
nil.
Definition float_temporaries :=
FT1 ::
FT2 ::
FP0 ::
nil.
Definition temporaries :=
R IT1 ::
R IT2 ::
R rEAX ::
R FT1 ::
R FT2 ::
R FP0 ::
nil.
Definition dummy_int_reg :=
rEBX.
Definition dummy_float_reg :=
rXMM0.
The index_int_callee_save and index_float_callee_save associate
a unique positive integer to callee-save registers. This integer is
used in Stacking to determine where to save these registers in
the activation record if they are used by the current function.
Definition index_int_callee_save (
r:
mreg) :=
match r with
|
rEBX => 1 |
rESI => 2 |
rEDI => 3 |
rEBP => 4 |
_ => -1
end.
Definition index_float_callee_save (
r:
mreg) := -1.
Ltac ElimOrEq :=
match goal with
| |- (?
x = ?
y) \/
_ ->
_ =>
let H :=
fresh in
(
intro H;
elim H;
clear H;
[
intro H;
rewrite <-
H;
clear H |
ElimOrEq])
| |-
False ->
_ =>
let H :=
fresh in (
intro H;
contradiction)
end.
Ltac OrEq :=
match goal with
| |- (?
x = ?
x) \/
_ =>
left;
reflexivity
| |- (?
x = ?
y) \/
_ =>
right;
OrEq
| |-
False =>
fail
end.
Ltac NotOrEq :=
match goal with
| |- (?
x = ?
y) \/
_ ->
False =>
let H :=
fresh in (
intro H;
elim H;
clear H; [
intro;
discriminate |
NotOrEq])
| |-
False ->
False =>
contradiction
end.
Lemma index_int_callee_save_pos:
forall r,
In r int_callee_save_regs ->
index_int_callee_save r >= 0.
Proof.
intro r. simpl; ElimOrEq; unfold index_int_callee_save; omega.
Qed.
Lemma index_float_callee_save_pos:
forall r,
In r float_callee_save_regs ->
index_float_callee_save r >= 0.
Proof.
intro r. simpl; ElimOrEq; unfold index_float_callee_save; omega.
Qed.
Lemma index_int_callee_save_pos2:
forall r,
index_int_callee_save r >= 0 ->
In r int_callee_save_regs.
Proof.
unfold index_int_callee_save; destruct r; simpl; intro; omegaContradiction || OrEq.
Qed.
Lemma index_float_callee_save_pos2:
forall r,
index_float_callee_save r >= 0 ->
In r float_callee_save_regs.
Proof.
unfold index_float_callee_save; destruct r; simpl; intro; omegaContradiction || OrEq.
Qed.
Lemma index_int_callee_save_inj:
forall r1 r2,
In r1 int_callee_save_regs ->
In r2 int_callee_save_regs ->
r1 <>
r2 ->
index_int_callee_save r1 <>
index_int_callee_save r2.
Proof.
by intros r1 r2; simpl; ElimOrEq; ElimOrEq.
Qed.
Lemma index_float_callee_save_inj:
forall r1 r2,
In r1 float_callee_save_regs ->
In r2 float_callee_save_regs ->
r1 <>
r2 ->
index_float_callee_save r1 <>
index_float_callee_save r2.
Proof.
by intros r1 r2; simpl; ElimOrEq; ElimOrEq.
Qed.
The following lemmas show that
(temporaries, destroyed at call, integer callee-save, float callee-save)
is a partition of the set of machine registers.
Lemma int_float_callee_save_disjoint:
list_disjoint int_callee_save_regs float_callee_save_regs.
Proof.
red; intros r1 r2. simpl; ElimOrEq; ElimOrEq; discriminate.
Qed.
Lemma register_classification:
forall r,
(
In (
R r)
temporaries \/
In (
R r)
destroyed_at_call) \/
(
In r int_callee_save_regs \/
In r float_callee_save_regs).
Proof.
destruct r;
try (left; left; simpl; OrEq);
try (left; right; simpl; OrEq);
try (right; left; simpl; OrEq);
try (right; right; simpl; OrEq);
try auto.
Qed.
Lemma int_callee_save_not_destroyed:
forall r,
In (
R r)
temporaries \/
In (
R r)
destroyed_at_call ->
~(
In r int_callee_save_regs).
Proof.
intros; red; intros. elim H.
generalize H0. simpl; ElimOrEq; NotOrEq.
generalize H0. simpl; ElimOrEq; NotOrEq.
Qed.
Lemma float_callee_save_not_destroyed:
forall r,
In (
R r)
temporaries \/
In (
R r)
destroyed_at_call ->
~(
In r float_callee_save_regs).
Proof.
intros; red; intros. elim H.
generalize H0. simpl; ElimOrEq; NotOrEq.
generalize H0. simpl; ElimOrEq; NotOrEq.
Qed.
Lemma int_callee_save_type:
forall r,
In r int_callee_save_regs ->
mreg_type r =
Tint.
Proof.
by intro; simpl; ElimOrEq.
Qed.
Lemma float_callee_save_type:
forall r,
In r float_callee_save_regs ->
mreg_type r =
Tfloat.
Proof.
by intro; simpl; ElimOrEq.
Qed.
Ltac NoRepet :=
match goal with
| |-
NoDup nil =>
apply NoDup_nil
| |-
NoDup (?
a :: ?
b) =>
apply NoDup_cons; [
simpl;
intuition discriminate |
NoRepet]
end.
Lemma int_callee_save_norepet:
NoDup int_callee_save_regs.
Proof.
unfold int_callee_save_regs; NoRepet.
Qed.
Lemma float_callee_save_norepet:
NoDup float_callee_save_regs.
Proof.
unfold float_callee_save_regs; NoRepet.
Qed.
Acceptable locations for register allocation
The following predicate describes the locations that can be assigned
to an RTL pseudo-register during register allocation: a non-temporary
machine register or a Local stack slot are acceptable.
Definition loc_acceptable (
l:
loc) :
Prop :=
match l with
|
R r => ~(
In l temporaries)
|
S (
Local ofs ty) =>
ofs >= 0
|
S (
Incoming _ _) =>
False
|
S (
Outgoing _ _) =>
False
end.
Definition locs_acceptable (
ll:
list loc) :
Prop :=
forall l,
In l ll ->
loc_acceptable l.
Lemma temporaries_not_acceptable:
forall l,
loc_acceptable l ->
Loc.notin l temporaries.
Proof.
unfold loc_acceptable; destruct l.
simpl. intuition congruence.
destruct s; try contradiction.
intro. simpl. tauto.
Qed.
Hint Resolve temporaries_not_acceptable:
locs.
Lemma locs_acceptable_disj_temporaries:
forall ll,
locs_acceptable ll ->
Loc.disjoint ll temporaries.
Proof.
Lemma loc_acceptable_noteq_diff:
forall l1 l2,
loc_acceptable l1 ->
l1 <>
l2 ->
Loc.diff l1 l2.
Proof.
unfold loc_acceptable,
Loc.diff;
destruct l1;
destruct l2;
try (
destruct s);
try (
destruct s0);
intros;
auto;
try congruence.
case (
zeq z z0);
intro.
compare t t0;
intro.
subst z0;
subst t0;
tauto.
tauto.
tauto.
contradiction.
contradiction.
Qed.
Lemma loc_acceptable_notin_notin:
forall r ll,
loc_acceptable r ->
~(
In r ll) ->
Loc.notin r ll.
Proof.
Function calling conventions
The functions in this section determine the locations (machine registers
and stack slots) used to communicate arguments and results between the
caller and the callee during function calls. These locations are functions
of the signature of the function and of the call instruction.
Agreement between the caller and the callee on the locations to use
is guaranteed by our dynamic semantics for Cminor and RTL, which demand
that the signature of the call instruction is identical to that of the
called function.
Calling conventions are largely arbitrary: they must respect the properties
proved in this section (such as no overlapping between the locations
of function arguments), but this leaves much liberty in choosing actual
locations. To ensure binary interoperability of code generated by our
compiler with libraries compiled by another PowerPC compiler, we
implement the standard conventions defined in the PowerPC/MacOS X
application binary interface.
Location of function result
The result value of a function is passed back to the caller in
registers REAX or F1, depending on the type of the returned value.
We treat a function without result as a function with one integer result.
Definition loc_result (
s:
signature) :
mreg :=
match s.(
sig_res)
with
|
None =>
rEAX
|
Some Tint =>
rEAX
|
Some Tfloat =>
FP0
end.
The result location has the type stated in the signature.
Lemma loc_result_type:
forall sig,
mreg_type (
loc_result sig) =
match sig.(
sig_res)
with None =>
Tint |
Some ty =>
ty end.
Proof.
intros;
unfold loc_result.
destruct (
sig_res sig).
destruct t;
reflexivity.
reflexivity.
Qed.
The result location is a temporary
Lemma loc_result_temporary:
forall (
s:
signature),
In (
R (
loc_result s))
temporaries.
Proof.
intros;
unfold loc_result.
destruct (
sig_res s).
destruct t;
simpl;
tauto.
simpl;
tauto.
Qed.
The result location is not a callee-save register.
Lemma loc_result_not_callee_save:
forall (
s:
signature),
~(
In (
loc_result s)
int_callee_save_regs \/
In (
loc_result s)
float_callee_save_regs).
Proof.
intros.
intro.
destruct H.
unfold int_callee_save_regs in H.
unfold loc_result in H.
inv H.
case_eq (
sig_res s);
intros.
try destruct t;
rewrite H in H0;
inv H0.
rewrite H in H0;
inv H0.
case_eq (
sig_res s);
intros.
try destruct t;
rewrite H in H0;
inv H0;
inv H1;
try inv H0;
try inv H1.
rewrite H in H0;
inv H0;
inv H1;
try inv H0;
try inv H1.
inv H.
Qed.
All arguments are passed on the stack.
Fixpoint loc_arguments_rec
(
tyl:
list typ) (
ofs:
Z) {
struct tyl} :
list loc :=
match tyl with
|
nil =>
nil
|
Tint ::
tys =>
S (
Outgoing ofs Tint) ::
loc_arguments_rec tys (
ofs + 1)
|
Tfloat ::
tys =>
S (
Outgoing ofs Tfloat) ::
loc_arguments_rec tys (
ofs + 2)
end.
loc_arguments s returns the list of locations where to store arguments
when calling a function with signature s.
Definition loc_arguments (
s:
signature) :
list loc :=
loc_arguments_rec s.(
sig_args) 0.
size_arguments s returns the number of Outgoing slots used
to call a function with signature s.
Fixpoint size_arguments_rec
(
tyl:
list typ) (
ofs:
Z) {
struct tyl} :
Z :=
match tyl with
|
nil =>
ofs
|
Tint ::
tys =>
size_arguments_rec tys (
ofs + 1)
|
Tfloat ::
tys =>
size_arguments_rec tys (
ofs + 2)
end.
Definition size_arguments (
s:
signature) :
Z :=
size_arguments_rec s.(
sig_args) 0.
Argument locations are either non-temporary registers or Outgoing
stack slots at nonnegative offsets.
Definition loc_argument_acceptable (
l:
loc) :
Prop :=
match l with
|
R r => ~(
In l temporaries)
|
S (
Outgoing ofs ty) =>
ofs >= 0
|
_ =>
False
end.
Remark loc_arguments_rec_charact:
forall tyl ofs l,
In l (
loc_arguments_rec tyl ofs) ->
match l with
|
S (
Outgoing ofs'
ty) =>
ofs' >=
ofs
|
_ =>
False
end.
Proof.
induction tyl;
simpl loc_arguments_rec;
intros.
elim H.
destruct a;
simpl in H;
destruct H.
subst l.
omega.
generalize (
IHtyl _ _ H).
destruct l;
auto.
destruct s;
auto.
omega.
subst l.
omega.
generalize (
IHtyl _ _ H).
destruct l;
auto.
destruct s;
auto.
omega.
Qed.
Lemma loc_arguments_acceptable:
forall (
s:
signature) (
r:
loc),
In r (
loc_arguments s) ->
loc_argument_acceptable r.
Proof.
Hint Resolve loc_arguments_acceptable:
locs.
Arguments are parwise disjoint (in the sense of Loc.norepet).
Remark loc_arguments_rec_notin_reg:
forall tyl ofs r,
Loc.notin (
R r) (
loc_arguments_rec tyl ofs).
Proof.
induction tyl; simpl; intros.
auto.
destruct a.
simpl. split; auto.
simpl. split; auto.
Qed.
Remark loc_arguments_rec_notin_local:
forall tyl ofs ofs0 ty0,
Loc.notin (
S (
Local ofs0 ty0)) (
loc_arguments_rec tyl ofs).
Proof.
induction tyl; simpl; intros.
auto.
destruct a; simpl; auto.
Qed.
Remark loc_arguments_rec_notin_outgoing:
forall tyl ofs ofs0 ty0,
ofs0 +
typesize ty0 <=
ofs ->
Loc.notin (
S (
Outgoing ofs0 ty0)) (
loc_arguments_rec tyl ofs).
Proof.
induction tyl; simpl; intros.
auto.
destruct a.
split. simpl. omega. eapply IHtyl. omega.
split. simpl. omega. eapply IHtyl. omega.
Qed.
Lemma loc_arguments_norepet:
forall (
s:
signature),
Loc.norepet (
loc_arguments s).
Proof.
The offsets of Outgoing arguments are below size_arguments s.
Remark size_arguments_rec_above:
forall tyl ofs0,
ofs0 <=
size_arguments_rec tyl ofs0.
Proof.
induction tyl;
simpl;
intros.
omega.
destruct a.
apply Zle_trans with (
ofs0 + 1);
auto;
omega.
apply Zle_trans with (
ofs0 + 2);
auto;
omega.
Qed.
Lemma size_arguments_above:
forall s,
size_arguments s >= 0.
Proof.
Lemma loc_arguments_bounded:
forall (
s:
signature) (
ofs:
Z) (
ty:
typ),
In (
S (
Outgoing ofs ty)) (
loc_arguments s) ->
ofs +
typesize ty <=
size_arguments s.
Proof.
Temporary registers do not overlap with argument locations.
Lemma loc_arguments_not_temporaries:
forall sig,
Loc.disjoint (
loc_arguments sig)
temporaries.
Proof.
intros;
red;
intros x1 x2 H.
generalize (
loc_arguments_rec_charact _ _ _ H).
destruct x1.
tauto.
destruct s;
intuition.
revert H1.
simpl;
ElimOrEq;
auto.
Qed.
Hint Resolve loc_arguments_not_temporaries:
locs.
Argument registers are caller-save.
Lemma arguments_caller_save:
forall sig r,
In (
R r) (
loc_arguments sig) ->
In (
R r)
destroyed_at_call.
Proof.
Callee-save registers do not overlap with argument locations.
Lemma arguments_not_preserved:
forall sig l,
Loc.notin l destroyed_at_call ->
loc_acceptable l ->
Loc.notin l (
loc_arguments sig).
Proof.
Hint Resolve arguments_not_preserved:
locs.
Argument locations agree in number with the function signature.
Lemma loc_arguments_length:
forall sig,
List.length (
loc_arguments sig) =
List.length sig.(
sig_args).
Proof.
intros.
unfold loc_arguments.
generalize (
sig_args sig) 0.
induction l;
simpl;
intros.
auto.
destruct a;
simpl;
decEq;
auto.
Qed.
Argument locations agree in types with the function signature.
Lemma loc_arguments_type:
forall sig,
List.map Loc.type (
loc_arguments sig) =
sig.(
sig_args).
Proof.
intros.
unfold loc_arguments.
generalize (
sig_args sig) 0.
induction l;
simpl;
intros.
auto.
destruct a;
simpl;
decEq;
auto.
Qed.
There is no partial overlap between an argument location and an
acceptable location: they are either identical or disjoint.
Lemma no_overlap_arguments:
forall args sg,
locs_acceptable args ->
Loc.no_overlap args (
loc_arguments sg).
Proof.
unfold Loc.no_overlap;
intros.
generalize (
H r H0).
generalize (
loc_arguments_acceptable _ _ H1).
destruct s;
destruct r;
simpl.
intros.
case (
mreg_eq m0 m);
intro.
left;
congruence.
tauto.
intros.
right;
destruct s;
auto.
intros.
right.
auto.
destruct s;
try tauto.
destruct s0;
tauto.
Qed.
Location of function parameters
A function finds the values of its parameter in the same locations
where its caller stored them, except that the stack-allocated arguments,
viewed as Outgoing slots by the caller, are accessed via Incoming
slots (at the same offsets and types) in the callee.
Definition parameter_of_argument (
l:
loc) :
loc :=
match l with
|
S (
Outgoing n ty) =>
S (
Incoming n ty)
|
_ =>
l
end.
Definition loc_parameters (
s:
signature) :=
List.map parameter_of_argument (
loc_arguments s).
Lemma loc_parameters_type:
forall sig,
List.map Loc.type (
loc_parameters sig) =
sig.(
sig_args).
Proof.
Lemma loc_parameters_length:
forall sg,
List.length (
loc_parameters sg) =
List.length sg.(
sig_args).
Proof.
Lemma loc_parameters_not_temporaries:
forall sig,
Loc.disjoint (
loc_parameters sig)
temporaries.
Proof.
intro;
red;
intros.
unfold loc_parameters in H.
elim (
list_in_map_inv _ _ _ H).
intros y [
EQ IN].
generalize (
loc_arguments_not_temporaries sig y x2 IN H0).
subst x1.
destruct x2.
destruct y;
simpl.
auto.
destruct s;
auto.
byContradiction.
generalize H0.
simpl.
NotOrEq.
Qed.
Lemma no_overlap_parameters:
forall params sg,
locs_acceptable params ->
Loc.no_overlap (
loc_parameters sg)
params.
Proof.
unfold Loc.no_overlap;
intros.
unfold loc_parameters in H0.
elim (
list_in_map_inv _ _ _ H0).
intros t [
EQ IN].
rewrite EQ.
generalize (
loc_arguments_acceptable _ _ IN).
generalize (
H s H1).
destruct s;
destruct t;
simpl.
intros.
case (
mreg_eq m0 m);
intro.
left;
congruence.
tauto.
intros.
right;
destruct s;
simpl;
auto.
intros;
right;
auto.
destruct s;
try tauto.
destruct s0;
try tauto.
intros;
simpl.
tauto.
Qed.
Locations destroyed by thread-create.
Definition destroyed_at_threadcreate_regs :=
loc_result thread_create_sig ::
int_caller_save_regs ++
float_caller_save_regs.
Definition destroyed_at_threadcreate :=
List.map R destroyed_at_threadcreate_regs.