module Elt : sig ... end with type Elt.t = t with type Elt.comparator_witness = comparator_witnessmodule Tree : sig ... endinclude Core_kernel.Set_intf.S_plain with module Elt := Elt and module Tree := Tree
type t = (Elt.t, Elt.comparator_witness) Base.Set.tval compare : t -> t -> Base.Int.tval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.ttype named = (Elt.t, Elt.comparator_witness) Core_kernel.Set_intf.Named.tinclude Core_kernel.Set_intf.Creators_and_accessors0 with type ('a, 'b) set := ('a, 'b) Base.Set.t with type t := t with type tree := Tree.t with type elt := Elt.t with type named := named with type comparator_witness := Elt.comparator_witness
include Core_kernel.Set_intf.Accessors0 with type t := t with type tree := Tree.t with type elt := Elt.t with type named := named with type comparator_witness := Elt.comparator_witness
include Core_kernel.Set_intf.Set.Accessors0 with type t := t with type tree := Tree.t with type elt := Elt.t with type named := named with type comparator_witness := Elt.comparator_witness
include Base.Container.S0 with type t := t with type elt := Elt.t
val length : t -> intval is_empty : t -> booliter must allow exceptions raised in f to escape, terminating the iteration cleanly. The same holds for all functions below taking an f.
fold t ~init ~f returns f (... f (f (f init e1) e2) e3 ...) en, where e1..en are the elements of t.
val fold_result : t -> init:'accum -> f:('accum -> Elt.t -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.tfold_result t ~init ~f is a short-circuiting version of fold that runs in the Result monad. If f returns an Error _, that value is returned without any additional invocations of f.
val fold_until : t -> init:'accum -> f:('accum -> Elt.t -> ('accum, 'final) Base__Container_intf.Export.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'finalfold_until t ~init ~f ~finish is a short-circuiting version of fold. If f returns Stop _ the computation ceases and results in that value. If f returns Continue _, the fold will proceed. If f never returns Stop _, the final result is computed by finish.
Example:
type maybe_negative =
| Found_negative of int
| All_nonnegative of { sum : int }
(** [first_neg_or_sum list] returns the first negative number in [list], if any,
otherwise returns the sum of the list. *)
let first_neg_or_sum =
List.fold_until ~init:0
~f:(fun sum x ->
if x < 0
then Stop (Found_negative x)
else Continue (sum + x))
~finish:(fun sum -> All_nonnegative { sum })
;;
let x = first_neg_or_sum [1; 2; 3; 4; 5]
val x : maybe_negative = All_nonnegative {sum = 15}
let y = first_neg_or_sum [1; 2; -3; 4; 5]
val y : maybe_negative = Found_negative -3Returns true if and only if there exists an element for which the provided function evaluates to true. This is a short-circuiting operation.
Returns true if and only if the provided function evaluates to true for all elements. This is a short-circuiting operation.
Returns the number of elements for which the provided function evaluates to true.
val sum : (module Base__Container_intf.Summable with type t = 'sum) -> t -> f:(Elt.t -> 'sum) -> 'sumReturns the sum of f i for all i in the container.
Returns as an option the first element for which f evaluates to true.
Returns the first evaluation of f that returns Some, and returns None if there is no such element.
Returns a min (resp. max) element from the collection using the provided compare function. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses fold so it has the same complexity as fold. Returns None iff the collection is empty.
val invariants : t -> boolval symmetric_diff : t -> t -> (Elt.t, Elt.t) Base.Either.t Base.Sequence.tmodule Named : sig ... endval fold_until : t -> init:'b -> f:('b -> Elt.t -> ('b, 'final) Base__Set_intf.Continue_or_stop.t) -> finish:('b -> 'final) -> 'finalval iter2 : t -> t -> f:([ `Left of Elt.t | `Right of Elt.t | `Both of Elt.t * Elt.t ] -> unit) -> unitval to_sequence : ?order:[ `Increasing | `Decreasing ] -> ?greater_or_equal_to:Elt.t -> ?less_or_equal_to:Elt.t -> t -> Elt.t Base.Sequence.tval binary_search : t -> compare:(Elt.t -> 'key -> int) -> [ `Last_strictly_less_than | `Last_less_than_or_equal_to | `Last_equal_to | `First_equal_to | `First_greater_than_or_equal_to | `First_strictly_greater_than ] -> 'key -> Elt.t optionval binary_search_segmented : t -> segment_of:(Elt.t -> [ `Left | `Right ]) -> [ `Last_on_left | `First_on_right ] -> Elt.t optionval merge_to_sequence : ?order:[ `Increasing | `Decreasing ] -> ?greater_or_equal_to:Elt.t -> ?less_or_equal_to:Elt.t -> t -> t -> (Elt.t, Elt.t) Base.Sequence.Merge_with_duplicates_element.t Base.Sequence.tval to_map : t -> f:(Elt.t -> 'data) -> (Elt.t, 'data, Elt.comparator_witness) Base.Map.tval quickcheck_observer : Elt.t Core_kernel.Quickcheck.Observer.t -> t Core_kernel.Quickcheck.Observer.tval quickcheck_shrinker : Elt.t Core_kernel.Quickcheck.Shrinker.t -> t Core_kernel.Quickcheck.Shrinker.tinclude Core_kernel.Set_intf.Creators0 with type t := t with type tree := Tree.t with type elt := Elt.t with type comparator_witness := Elt.comparator_witness with type ('a, 'b) set := ('a, 'b) Base.Set.t
include Core_kernel.Set_intf.Set.Creators0 with type t := t with type tree := Tree.t with type elt := Elt.t with type comparator_witness := Elt.comparator_witness with type ('a, 'b) set := ('a, 'b) Base.Set.t
val empty : tval of_sorted_array : Elt.t array -> t Base.Or_error.tval map : ('a, 'b) Base.Set.t -> f:('a -> Elt.t) -> tval filter_map : ('a, 'b) Base.Set.t -> f:('a -> Elt.t option) -> tval of_hash_set : Elt.t Core_kernel.Hash_set.t -> tval of_hashtbl_keys : (Elt.t, _) Core_kernel.Hashtbl.t -> tval of_map_keys : (Elt.t, _, Elt.comparator_witness) Base.Map.t -> tval quickcheck_generator : Elt.t Core_kernel.Quickcheck.Generator.t -> t Core_kernel.Quickcheck.Generator.tmodule Provide_of_sexp : functor (Elt : sig ... end with type Provide_of_sexp.t := Elt.t) -> sig ... end with type Provide_of_sexp.t := tmodule Provide_bin_io : functor (Elt : sig ... end with type Provide_bin_io.t := Elt.t) -> Core_kernel.Set_intf.Binable.S with type t := tmodule Provide_hash : functor (Elt : Base.Hasher.S with type t := Elt.t) -> sig ... end with type Provide_hash.t := tinclude Core_kernel.Sexpable.S with type t := t
val t_of_sexp : Base.Sexp.t -> tval sexp_of_t : t -> Base.Sexp.t