This type t
supports bin-io and sexp conversion by way of the [@@deriving bin_io, sexp]
extensions, which inline the relevant function signatures (like bin_read_t
and t_of_sexp
).
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1
val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1
val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1
val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1
val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writer
val bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.reader
val bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a t
val sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t
val hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
val create : 'a -> 'a -> 'a t
create l u
returns the interval with lower bound l
and upper bound u
, unless l > u
, in which case it returns the empty interval.
val empty : 'a t
val is_empty : 'a t -> bool
val is_empty_or_singleton : 'a t -> bool
val bounds : 'a t -> ('a * 'a) option
val lbound : 'a t -> 'a option
val ubound : 'a t -> 'a option
val bounds_exn : 'a t -> 'a * 'a
val lbound_exn : 'a t -> 'a
val ubound_exn : 'a t -> 'a
convex_hull ts
returns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.
Suppose you had three intervals a
, b
, and c
:
a: ( ) b: ( ) c: ( ) hull: ( )
In this case the hull goes from lbound_exn a
to ubound_exn c
.
val contains : 'a t -> 'a -> bool
val compare_value : 'a t -> 'a -> [ `Below | `Within | `Above | `Interval_is_empty ]
val bound : 'a t -> 'a -> 'a option
bound t x
returns None
iff is_empty t
. If bounds t = Some (a, b)
, then bound
returns Some y
where y
is the element of t
closest to x
. I.e.:
y = a if x < a y = x if a <= x <= b y = b if x > b
is_superset i1 of_:i2
is whether i1 contains i2. The empty interval is contained in every interval.
map t ~f
returns create (f l) (f u)
if bounds t = Some (l, u)
, and empty
if t
is empty. Note that if f l > f u
, the result of map
is empty
, by the definition of create
.
If you think of an interval as a set of points, rather than a pair of its bounds, then map
is not the same as the usual mathematical notion of mapping f
over that set. For example, map ~f:(fun x -> x * x)
maps the interval [-1,1]
to [1,1]
, not to [0,1]
.
val are_disjoint : 'a t list -> bool
are_disjoint ts
returns true
iff the intervals in ts
are pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> bool
Returns true iff a given set of intervals would be disjoint if considered as open intervals, e.g., (3,4)
and (4,5)
would count as disjoint according to this function.
Assuming that ilist1
and ilist2
are lists of disjoint intervals, list_intersect
ilist1 ilist2
considers the intersection (intersect i1 i2)
of every pair of intervals (i1, i2)
, with i1
drawn from ilist1
and i2
from ilist2
, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:
let i = Interval.create;;
list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];;
[(4, 4), (5, 7), (9, 10), (14, 15)]
Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> bool
Returns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the n
th interval is equal to the lower bound of the n+1
th interval. The intervals do not need to partition the entire space, they just need to partition their union.
Type-specialized intervals
Signatures
module type S1 = Interval_intf.S1
module type S_time = Interval_intf.S_time with type 'a poly_t := 'a t with type 'a poly_set := 'a Set.t
S_time
is a signature that's used below to define the interfaces for Time
and Time_ns
without duplication.
Specialized interval types
module Ofday : S with type bound = Base.Float.t
module Ofday_ns : S with type bound = Interval_intf.Time_ns.Ofday.t
module Time_ns : S_time with module Time := Interval_intf.Time_ns and type t = Interval_intf.Time_ns.t t
module Float : S with type bound = Core_kernel.Float.t
module Int : sig ... end
Interval.Make
is a functor that takes a type that you'd like to create intervals for and returns a module with functions over intervals of that type.
module Stable : sig ... end
Stable
is used to build stable protocols. It ensures backwards compatibility by checking the sexp and bin-io representations of a given module. Here it's also applied to the Float
, Int
, Time
, Time_ns
, and Ofday
intervals.