This type t supports bin-io and sexp conversion by way of the [@@deriving bin_io, sexp] extensions, which inline the relevant function signatures (like bin_read_t and t_of_sexp).
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writerval bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.readerval bin_t : ('a, 'a t) Bin_prot.Type_class.S1.tinclude Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a tval sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.tval hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.stateval create : 'a -> 'a -> 'a tcreate l u returns the interval with lower bound l and upper bound u, unless l > u, in which case it returns the empty interval.
val empty : 'a tval is_empty : 'a t -> boolval is_empty_or_singleton : 'a t -> boolval bounds : 'a t -> ('a * 'a) optionval lbound : 'a t -> 'a optionval ubound : 'a t -> 'a optionval bounds_exn : 'a t -> 'a * 'aval lbound_exn : 'a t -> 'aval ubound_exn : 'a t -> 'aconvex_hull ts returns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.
Suppose you had three intervals a, b, and c:
a: ( )
b: ( )
c: ( )
hull: ( )In this case the hull goes from lbound_exn a to ubound_exn c.
val contains : 'a t -> 'a -> boolval compare_value : 'a t -> 'a -> [ `Below | `Within | `Above | `Interval_is_empty ]val bound : 'a t -> 'a -> 'a optionbound t x returns None iff is_empty t. If bounds t = Some (a, b), then bound returns Some y where y is the element of t closest to x. I.e.:
y = a if x < a
y = x if a <= x <= b
y = b if x > bis_superset i1 of_:i2 is whether i1 contains i2. The empty interval is contained in every interval.
map t ~f returns create (f l) (f u) if bounds t = Some (l, u), and empty if t is empty. Note that if f l > f u, the result of map is empty, by the definition of create.
If you think of an interval as a set of points, rather than a pair of its bounds, then map is not the same as the usual mathematical notion of mapping f over that set. For example, map ~f:(fun x -> x * x) maps the interval [-1,1] to [1,1], not to [0,1].
val are_disjoint : 'a t list -> boolare_disjoint ts returns true iff the intervals in ts are pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> boolReturns true iff a given set of intervals would be disjoint if considered as open intervals, e.g., (3,4) and (4,5) would count as disjoint according to this function.
Assuming that ilist1 and ilist2 are lists of disjoint intervals, list_intersect
ilist1 ilist2 considers the intersection (intersect i1 i2) of every pair of intervals (i1, i2), with i1 drawn from ilist1 and i2 from ilist2, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:
let i = Interval.create;;
list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];;
[(4, 4), (5, 7), (9, 10), (14, 15)]Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> boolReturns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the nth interval is equal to the lower bound of the n+1th interval. The intervals do not need to partition the entire space, they just need to partition their union.
Type-specialized intervals
Signatures
module type S1 = Interval_intf.S1module type S_time = Interval_intf.S_time with type 'a poly_t := 'a t with type 'a poly_set := 'a Set.tS_time is a signature that's used below to define the interfaces for Time and Time_ns without duplication.
Specialized interval types
module Ofday : S with type bound = Base.Float.tmodule Ofday_ns : S with type bound = Interval_intf.Time_ns.Ofday.tmodule Time_ns : S_time with module Time := Interval_intf.Time_ns and type t = Interval_intf.Time_ns.t tmodule Float : S with type bound = Core_kernel.Float.tmodule Int : sig ... endInterval.Make is a functor that takes a type that you'd like to create intervals for and returns a module with functions over intervals of that type.
module Stable : sig ... endStable is used to build stable protocols. It ensures backwards compatibility by checking the sexp and bin-io representations of a given module. Here it's also applied to the Float, Int, Time, Time_ns, and Ofday intervals.