next up previous
Next: Solution Notes Up: Continuous Mathematics Previous: Solution Notes

Solution Notes -- Example Problem Set 4

1.
The new Fourier Transform will be: \(
{\displaystyle \frac{d^mf(x)}{dx^m}}
\stackrel{FT}{\Longrightarrow}
(i\mu)^{m}F(\mu).\)

2.
The new Fourier Transform will be: $F(\mu)e^{- i\alpha \mu}$.

3.
The new Fourier Transform will be: $\vert\alpha \vert F(\alpha\mu)$.

4.
The Fourier Transform $H(\mu)$ of the convolution result h(x) from convolving f(x) with another function g(x), having respective Fourier Transforms $F(\mu)$ and $G(\mu)$, is the product of the two Transforms: $H(\mu) = F(\mu)G(\mu)$.

5.
The Laplacian operator $\nabla^{2}$ is defined as:

\begin{displaymath}\nabla^{2} \equiv
\left(\frac{d^{2}}{dx^{2}} + \frac{d^{2}}{dy^{2}}
\right) \end{displaymath}

and the 2D Fourier Transform of $\nabla^{2}f(x,y)$ is:

\begin{displaymath}\nabla^{2}f(x,y)\equiv
\left(\frac{d^{2}}{dx^{2}} + \frac{d^{...
...stackrel{2DFT}{\Longrightarrow} -(\mu^{2}+\nu^{2})F(\mu,\nu).
\end{displaymath}



Neil Dodgson
2000-10-20