



Next: Computer Graphics and Image Up: Lent Term 2010: Part Previous: Compiler Construction Contents
Computation Theory
Lecturer: Professor A.M. Pitts
No. of lectures: 12
Prerequisite course: Discrete Mathematics
This course is a prerequisite for Complexity Theory (Part IB), Quantum Computing (Part II).
Aims
The aim of this course is to introduce several apparently different formalisations of the informal notion of algorithm; to show that they are equivalent; and to use them to demonstrate that there are uncomputable functions and algorithmically undecidable problems.
Lectures
- Introduction: algorithmically undecidable problems.
Decision problems. The informal notion of algorithm, or effective
procedure. Examples of algorithmically undecidable problems. [1
lecture]
- Register machines. Definition and examples; graphical
notation. Register machine computable functions. Doing arithmetic
with register machines. [1 lecture]
- Universal register machine. Natural number encoding of
pairs and lists. Coding register machine programs as numbers.
Specification and implementation of a universal register
machine. [2 lectures]
- Undecidability of the halting problem. Statement and
proof. Example of an uncomputable partial function. Decidable sets
of numbers; examples of undecidable sets of numbers. [1 lecture]
- Turing machines. Informal description. Definition and
examples. Turing computable functions. Equivalence of register
machine computability and Turing computability. The Church-Turing
Thesis. [2 lectures]
- Primitive and partial recursive functions. Definition and
examples. Existence of a recursive, but not primitive recursive
function. A partial function is partial recursive if and only if it
is computable. [2 lectures]
-Calculus. Alpha and beta conversion. Normalization. Encoding data. Writing recursive functions in the
-calculus. The relationship between computable functions and
-definable functions. [3 lectures]
Objectives
At the end of the course students should
- be familiar with the register machine, Turing machine and
-calculus models of computability;
- understand the notion of coding programs as data, and of a universal
machine;
- be able to use diagonalisation to prove the undecidability of
the Halting Problem;
- understand the mathematical notion of partial recursive function
and its relationship to computability.
Recommended reading
* Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to automata theory, languages, and computation. Addison-Wesley (2nd ed.).
* Hindley, J.R. & Seldin, J.P. (2008). Lambda-calculus and combinators, an introduction. Cambridge University Press (2nd ed.).
Cutland, N.J. (1980). Computability: an introduction to recursive function theory. Cambridge University Press.
Davis, M.D., Sigal, R. & Weyuker, E.J. (1994). Computability, complexity and languages. Academic Press (2nd ed.).
Sudkamp, T.A. (2005). Languages and machines. Addison-Wesley (3rd ed.).




Next: Computer Graphics and Image Up: Lent Term 2010: Part Previous: Compiler Construction Contents