Theory ConvexPD

(*  Title:      HOL/HOLCF/ConvexPD.thy
    Author:     Brian Huffman
*)

section ‹Convex powerdomain›

theory ConvexPD
imports UpperPD LowerPD
begin

subsection ‹Basis preorder›

definition
  convex_le :: "'a pd_basis  'a pd_basis  bool" (infix "≤♮" 50) where
  "convex_le = (λu v. u ≤♯ v  u ≤♭ v)"

lemma convex_le_refl [simp]: "t ≤♮ t"
unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl)

lemma convex_le_trans: "t ≤♮ u; u ≤♮ v  t ≤♮ v"
unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans)

interpretation convex_le: preorder convex_le
by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans)

lemma upper_le_minimal [simp]: "PDUnit compact_bot ≤♮ t"
unfolding convex_le_def Rep_PDUnit by simp

lemma PDUnit_convex_mono: "x  y  PDUnit x ≤♮ PDUnit y"
unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono)

lemma PDPlus_convex_mono: "s ≤♮ t; u ≤♮ v  PDPlus s u ≤♮ PDPlus t v"
unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono)

lemma convex_le_PDUnit_PDUnit_iff [simp]:
  "(PDUnit a ≤♮ PDUnit b) = (a  b)"
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast

lemma convex_le_PDUnit_lemma1:
  "(PDUnit a ≤♮ t) = (bRep_pd_basis t. a  b)"
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast

lemma convex_le_PDUnit_PDPlus_iff [simp]:
  "(PDUnit a ≤♮ PDPlus t u) = (PDUnit a ≤♮ t  PDUnit a ≤♮ u)"
unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast

lemma convex_le_PDUnit_lemma2:
  "(t ≤♮ PDUnit b) = (aRep_pd_basis t. a  b)"
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast

lemma convex_le_PDPlus_PDUnit_iff [simp]:
  "(PDPlus t u ≤♮ PDUnit a) = (t ≤♮ PDUnit a  u ≤♮ PDUnit a)"
unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast

lemma convex_le_PDPlus_lemma:
  assumes z: "PDPlus t u ≤♮ z"
  shows "v w. z = PDPlus v w  t ≤♮ v  u ≤♮ w"
proof (intro exI conjI)
  let ?A = "{bRep_pd_basis z. aRep_pd_basis t. a  b}"
  let ?B = "{bRep_pd_basis z. aRep_pd_basis u. a  b}"
  let ?v = "Abs_pd_basis ?A"
  let ?w = "Abs_pd_basis ?B"
  have Rep_v: "Rep_pd_basis ?v = ?A"
    apply (rule Abs_pd_basis_inverse)
    apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE])
    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
    apply (simp add: pd_basis_def)
    apply fast
    done
  have Rep_w: "Rep_pd_basis ?w = ?B"
    apply (rule Abs_pd_basis_inverse)
    apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE])
    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
    apply (simp add: pd_basis_def)
    apply fast
    done
  show "z = PDPlus ?v ?w"
    apply (insert z)
    apply (simp add: convex_le_def, erule conjE)
    apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus)
    apply (simp add: Rep_v Rep_w)
    apply (rule equalityI)
     apply (rule subsetI)
     apply (simp only: upper_le_def)
     apply (drule (1) bspec, erule bexE)
     apply (simp add: Rep_PDPlus)
     apply fast
    apply fast
    done
  show "t ≤♮ ?v" "u ≤♮ ?w"
   apply (insert z)
   apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w)
   apply fast+
   done
qed

lemma convex_le_induct [induct set: convex_le]:
  assumes le: "t ≤♮ u"
  assumes 2: "t u v. P t u; P u v  P t v"
  assumes 3: "a b. a  b  P (PDUnit a) (PDUnit b)"
  assumes 4: "t u v w. P t v; P u w  P (PDPlus t u) (PDPlus v w)"
  shows "P t u"
using le apply (induct t arbitrary: u rule: pd_basis_induct)
apply (erule rev_mp)
apply (induct_tac u rule: pd_basis_induct1)
apply (simp add: 3)
apply (simp, clarify, rename_tac a b t)
apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)")
apply (simp add: PDPlus_absorb)
apply (erule (1) 4 [OF 3])
apply (drule convex_le_PDPlus_lemma, clarify)
apply (simp add: 4)
done


subsection ‹Type definition›

typedef 'a convex_pd  ("('(_')♮)") =
  "{S::'a pd_basis set. convex_le.ideal S}"
by (rule convex_le.ex_ideal)

instantiation convex_pd :: (bifinite) below
begin

definition
  "x  y  Rep_convex_pd x  Rep_convex_pd y"

instance ..
end

instance convex_pd :: (bifinite) po
using type_definition_convex_pd below_convex_pd_def
by (rule convex_le.typedef_ideal_po)

instance convex_pd :: (bifinite) cpo
using type_definition_convex_pd below_convex_pd_def
by (rule convex_le.typedef_ideal_cpo)

definition
  convex_principal :: "'a pd_basis  'a convex_pd" where
  "convex_principal t = Abs_convex_pd {u. u ≤♮ t}"

interpretation convex_pd:
  ideal_completion convex_le convex_principal Rep_convex_pd
using type_definition_convex_pd below_convex_pd_def
using convex_principal_def pd_basis_countable
by (rule convex_le.typedef_ideal_completion)

text ‹Convex powerdomain is pointed›

lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot)  ys"
by (induct ys rule: convex_pd.principal_induct, simp, simp)

instance convex_pd :: (bifinite) pcpo
by intro_classes (fast intro: convex_pd_minimal)

lemma inst_convex_pd_pcpo: " = convex_principal (PDUnit compact_bot)"
by (rule convex_pd_minimal [THEN bottomI, symmetric])


subsection ‹Monadic unit and plus›

definition
  convex_unit :: "'a  'a convex_pd" where
  "convex_unit = compact_basis.extension (λa. convex_principal (PDUnit a))"

definition
  convex_plus :: "'a convex_pd  'a convex_pd  'a convex_pd" where
  "convex_plus = convex_pd.extension (λt. convex_pd.extension (λu.
      convex_principal (PDPlus t u)))"

abbreviation
  convex_add :: "'a convex_pd  'a convex_pd  'a convex_pd"
    (infixl "∪♮" 65) where
  "xs ∪♮ ys == convex_plusxsys"

syntax
  "_convex_pd" :: "args  logic" ("{_}♮")

translations
  "{x,xs}♮" == "{x}♮ ∪♮ {xs}♮"
  "{x}♮" == "CONST convex_unitx"

lemma convex_unit_Rep_compact_basis [simp]:
  "{Rep_compact_basis a}♮ = convex_principal (PDUnit a)"
unfolding convex_unit_def
by (simp add: compact_basis.extension_principal PDUnit_convex_mono)

lemma convex_plus_principal [simp]:
  "convex_principal t ∪♮ convex_principal u = convex_principal (PDPlus t u)"
unfolding convex_plus_def
by (simp add: convex_pd.extension_principal
    convex_pd.extension_mono PDPlus_convex_mono)

interpretation convex_add: semilattice convex_add proof
  fix xs ys zs :: "'a convex_pd"
  show "(xs ∪♮ ys) ∪♮ zs = xs ∪♮ (ys ∪♮ zs)"
    apply (induct xs rule: convex_pd.principal_induct, simp)
    apply (induct ys rule: convex_pd.principal_induct, simp)
    apply (induct zs rule: convex_pd.principal_induct, simp)
    apply (simp add: PDPlus_assoc)
    done
  show "xs ∪♮ ys = ys ∪♮ xs"
    apply (induct xs rule: convex_pd.principal_induct, simp)
    apply (induct ys rule: convex_pd.principal_induct, simp)
    apply (simp add: PDPlus_commute)
    done
  show "xs ∪♮ xs = xs"
    apply (induct xs rule: convex_pd.principal_induct, simp)
    apply (simp add: PDPlus_absorb)
    done
qed

lemmas convex_plus_assoc = convex_add.assoc
lemmas convex_plus_commute = convex_add.commute
lemmas convex_plus_absorb = convex_add.idem
lemmas convex_plus_left_commute = convex_add.left_commute
lemmas convex_plus_left_absorb = convex_add.left_idem

text ‹Useful for simp add: convex_plus_ac›
lemmas convex_plus_ac =
  convex_plus_assoc convex_plus_commute convex_plus_left_commute

text ‹Useful for simp only: convex_plus_aci›
lemmas convex_plus_aci =
  convex_plus_ac convex_plus_absorb convex_plus_left_absorb

lemma convex_unit_below_plus_iff [simp]:
  "{x}♮  ys ∪♮ zs  {x}♮  ys  {x}♮  zs"
apply (induct x rule: compact_basis.principal_induct, simp)
apply (induct ys rule: convex_pd.principal_induct, simp)
apply (induct zs rule: convex_pd.principal_induct, simp)
apply simp
done

lemma convex_plus_below_unit_iff [simp]:
  "xs ∪♮ ys  {z}♮  xs  {z}♮  ys  {z}♮"
apply (induct xs rule: convex_pd.principal_induct, simp)
apply (induct ys rule: convex_pd.principal_induct, simp)
apply (induct z rule: compact_basis.principal_induct, simp)
apply simp
done

lemma convex_unit_below_iff [simp]: "{x}♮  {y}♮  x  y"
apply (induct x rule: compact_basis.principal_induct, simp)
apply (induct y rule: compact_basis.principal_induct, simp)
apply simp
done

lemma convex_unit_eq_iff [simp]: "{x}♮ = {y}♮  x = y"
unfolding po_eq_conv by simp

lemma convex_unit_strict [simp]: "{}♮ = "
using convex_unit_Rep_compact_basis [of compact_bot]
by (simp add: inst_convex_pd_pcpo)

lemma convex_unit_bottom_iff [simp]: "{x}♮ =   x = "
unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff)

lemma compact_convex_unit: "compact x  compact {x}♮"
by (auto dest!: compact_basis.compact_imp_principal)

lemma compact_convex_unit_iff [simp]: "compact {x}♮  compact x"
apply (safe elim!: compact_convex_unit)
apply (simp only: compact_def convex_unit_below_iff [symmetric])
apply (erule adm_subst [OF cont_Rep_cfun2])
done

lemma compact_convex_plus [simp]:
  "compact xs; compact ys  compact (xs ∪♮ ys)"
by (auto dest!: convex_pd.compact_imp_principal)


subsection ‹Induction rules›

lemma convex_pd_induct1:
  assumes P: "adm P"
  assumes unit: "x. P {x}♮"
  assumes insert: "x ys. P {x}♮; P ys  P ({x}♮ ∪♮ ys)"
  shows "P (xs::'a convex_pd)"
apply (induct xs rule: convex_pd.principal_induct, rule P)
apply (induct_tac a rule: pd_basis_induct1)
apply (simp only: convex_unit_Rep_compact_basis [symmetric])
apply (rule unit)
apply (simp only: convex_unit_Rep_compact_basis [symmetric]
                  convex_plus_principal [symmetric])
apply (erule insert [OF unit])
done

lemma convex_pd_induct
  [case_names adm convex_unit convex_plus, induct type: convex_pd]:
  assumes P: "adm P"
  assumes unit: "x. P {x}♮"
  assumes plus: "xs ys. P xs; P ys  P (xs ∪♮ ys)"
  shows "P (xs::'a convex_pd)"
apply (induct xs rule: convex_pd.principal_induct, rule P)
apply (induct_tac a rule: pd_basis_induct)
apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit)
apply (simp only: convex_plus_principal [symmetric] plus)
done


subsection ‹Monadic bind›

definition
  convex_bind_basis ::
  "'a pd_basis  ('a  'b convex_pd)  'b convex_pd" where
  "convex_bind_basis = fold_pd
    (λa. Λ f. f(Rep_compact_basis a))
    (λx y. Λ f. xf ∪♮ yf)"

lemma ACI_convex_bind:
  "semilattice (λx y. Λ f. xf ∪♮ yf)"
apply unfold_locales
apply (simp add: convex_plus_assoc)
apply (simp add: convex_plus_commute)
apply (simp add: eta_cfun)
done

lemma convex_bind_basis_simps [simp]:
  "convex_bind_basis (PDUnit a) =
    (Λ f. f(Rep_compact_basis a))"
  "convex_bind_basis (PDPlus t u) =
    (Λ f. convex_bind_basis tf ∪♮ convex_bind_basis uf)"
unfolding convex_bind_basis_def
apply -
apply (rule fold_pd_PDUnit [OF ACI_convex_bind])
apply (rule fold_pd_PDPlus [OF ACI_convex_bind])
done

lemma convex_bind_basis_mono:
  "t ≤♮ u  convex_bind_basis t  convex_bind_basis u"
apply (erule convex_le_induct)
apply (erule (1) below_trans)
apply (simp add: monofun_LAM monofun_cfun)
apply (simp add: monofun_LAM monofun_cfun)
done

definition
  convex_bind :: "'a convex_pd  ('a  'b convex_pd)  'b convex_pd" where
  "convex_bind = convex_pd.extension convex_bind_basis"

syntax
  "_convex_bind" :: "[logic, logic, logic]  logic"
    ("(3⋃♮__./ _)" [0, 0, 10] 10)

translations
  "⋃♮xxs. e" == "CONST convex_bindxs(Λ x. e)"

lemma convex_bind_principal [simp]:
  "convex_bind(convex_principal t) = convex_bind_basis t"
unfolding convex_bind_def
apply (rule convex_pd.extension_principal)
apply (erule convex_bind_basis_mono)
done

lemma convex_bind_unit [simp]:
  "convex_bind{x}♮f = fx"
by (induct x rule: compact_basis.principal_induct, simp, simp)

lemma convex_bind_plus [simp]:
  "convex_bind(xs ∪♮ ys)f = convex_bindxsf ∪♮ convex_bindysf"
by (induct xs rule: convex_pd.principal_induct, simp,
    induct ys rule: convex_pd.principal_induct, simp, simp)

lemma convex_bind_strict [simp]: "convex_bindf = f"
unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit)

lemma convex_bind_bind:
  "convex_bind(convex_bindxsf)g =
    convex_bindxs(Λ x. convex_bind(fx)g)"
by (induct xs, simp_all)


subsection ‹Map›

definition
  convex_map :: "('a  'b)  'a convex_pd  'b convex_pd" where
  "convex_map = (Λ f xs. convex_bindxs(Λ x. {fx}♮))"

lemma convex_map_unit [simp]:
  "convex_mapf{x}♮ = {fx}♮"
unfolding convex_map_def by simp

lemma convex_map_plus [simp]:
  "convex_mapf(xs ∪♮ ys) = convex_mapfxs ∪♮ convex_mapfys"
unfolding convex_map_def by simp

lemma convex_map_bottom [simp]: "convex_mapf = {f}♮"
unfolding convex_map_def by simp

lemma convex_map_ident: "convex_map(Λ x. x)xs = xs"
by (induct xs rule: convex_pd_induct, simp_all)

lemma convex_map_ID: "convex_mapID = ID"
by (simp add: cfun_eq_iff ID_def convex_map_ident)

lemma convex_map_map:
  "convex_mapf(convex_mapgxs) = convex_map(Λ x. f(gx))xs"
by (induct xs rule: convex_pd_induct, simp_all)

lemma convex_bind_map:
  "convex_bind(convex_mapfxs)g = convex_bindxs(Λ x. g(fx))"
by (simp add: convex_map_def convex_bind_bind)

lemma convex_map_bind:
  "convex_mapf(convex_bindxsg) = convex_bindxs(Λ x. convex_mapf(gx))"
by (simp add: convex_map_def convex_bind_bind)

lemma ep_pair_convex_map: "ep_pair e p  ep_pair (convex_mape) (convex_mapp)"
apply standard
apply (induct_tac x rule: convex_pd_induct, simp_all add: ep_pair.e_inverse)
apply (induct_tac y rule: convex_pd_induct)
apply (simp_all add: ep_pair.e_p_below monofun_cfun)
done

lemma deflation_convex_map: "deflation d  deflation (convex_mapd)"
apply standard
apply (induct_tac x rule: convex_pd_induct, simp_all add: deflation.idem)
apply (induct_tac x rule: convex_pd_induct)
apply (simp_all add: deflation.below monofun_cfun)
done

(* FIXME: long proof! *)
lemma finite_deflation_convex_map:
  assumes "finite_deflation d" shows "finite_deflation (convex_mapd)"
proof (rule finite_deflation_intro)
  interpret d: finite_deflation d by fact
  from d.deflation_axioms show "deflation (convex_mapd)"
    by (rule deflation_convex_map)
  have "finite (range (λx. dx))" by (rule d.finite_range)
  hence "finite (Rep_compact_basis -` range (λx. dx))"
    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
  hence "finite (Pow (Rep_compact_basis -` range (λx. dx)))" by simp
  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (λx. dx))))"
    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
  hence *: "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (λx. dx))))" by simp
  hence "finite (range (λxs. convex_mapdxs))"
    apply (rule rev_finite_subset)
    apply clarsimp
    apply (induct_tac xs rule: convex_pd.principal_induct)
    apply (simp add: adm_mem_finite *)
    apply (rename_tac t, induct_tac t rule: pd_basis_induct)
    apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit)
    apply simp
    apply (subgoal_tac "b. d(Rep_compact_basis a) = Rep_compact_basis b")
    apply clarsimp
    apply (rule imageI)
    apply (rule vimageI2)
    apply (simp add: Rep_PDUnit)
    apply (rule range_eqI)
    apply (erule sym)
    apply (rule exI)
    apply (rule Abs_compact_basis_inverse [symmetric])
    apply (simp add: d.compact)
    apply (simp only: convex_plus_principal [symmetric] convex_map_plus)
    apply clarsimp
    apply (rule imageI)
    apply (rule vimageI2)
    apply (simp add: Rep_PDPlus)
    done
  thus "finite {xs. convex_mapdxs = xs}"
    by (rule finite_range_imp_finite_fixes)
qed

subsection ‹Convex powerdomain is bifinite›

lemma approx_chain_convex_map:
  assumes "approx_chain a"
  shows "approx_chain (λi. convex_map(a i))"
  using assms unfolding approx_chain_def
  by (simp add: lub_APP convex_map_ID finite_deflation_convex_map)

instance convex_pd :: (bifinite) bifinite
proof
  show "(a::nat  'a convex_pd  'a convex_pd). approx_chain a"
    using bifinite [where 'a='a]
    by (fast intro!: approx_chain_convex_map)
qed

subsection ‹Join›

definition
  convex_join :: "'a convex_pd convex_pd  'a convex_pd" where
  "convex_join = (Λ xss. convex_bindxss(Λ xs. xs))"

lemma convex_join_unit [simp]:
  "convex_join{xs}♮ = xs"
unfolding convex_join_def by simp

lemma convex_join_plus [simp]:
  "convex_join(xss ∪♮ yss) = convex_joinxss ∪♮ convex_joinyss"
unfolding convex_join_def by simp

lemma convex_join_bottom [simp]: "convex_join = "
unfolding convex_join_def by simp

lemma convex_join_map_unit:
  "convex_join(convex_mapconvex_unitxs) = xs"
by (induct xs rule: convex_pd_induct, simp_all)

lemma convex_join_map_join:
  "convex_join(convex_mapconvex_joinxsss) = convex_join(convex_joinxsss)"
by (induct xsss rule: convex_pd_induct, simp_all)

lemma convex_join_map_map:
  "convex_join(convex_map(convex_mapf)xss) =
   convex_mapf(convex_joinxss)"
by (induct xss rule: convex_pd_induct, simp_all)


subsection ‹Conversions to other powerdomains›

text ‹Convex to upper›

lemma convex_le_imp_upper_le: "t ≤♮ u  t ≤♯ u"
unfolding convex_le_def by simp

definition
  convex_to_upper :: "'a convex_pd  'a upper_pd" where
  "convex_to_upper = convex_pd.extension upper_principal"

lemma convex_to_upper_principal [simp]:
  "convex_to_upper(convex_principal t) = upper_principal t"
unfolding convex_to_upper_def
apply (rule convex_pd.extension_principal)
apply (rule upper_pd.principal_mono)
apply (erule convex_le_imp_upper_le)
done

lemma convex_to_upper_unit [simp]:
  "convex_to_upper{x}♮ = {x}♯"
by (induct x rule: compact_basis.principal_induct, simp, simp)

lemma convex_to_upper_plus [simp]:
  "convex_to_upper(xs ∪♮ ys) = convex_to_upperxs ∪♯ convex_to_upperys"
by (induct xs rule: convex_pd.principal_induct, simp,
    induct ys rule: convex_pd.principal_induct, simp, simp)

lemma convex_to_upper_bind [simp]:
  "convex_to_upper(convex_bindxsf) =
    upper_bind(convex_to_upperxs)(convex_to_upper oo f)"
by (induct xs rule: convex_pd_induct, simp, simp, simp)

lemma convex_to_upper_map [simp]:
  "convex_to_upper(convex_mapfxs) = upper_mapf(convex_to_upperxs)"
by (simp add: convex_map_def upper_map_def cfcomp_LAM)

lemma convex_to_upper_join [simp]:
  "convex_to_upper(convex_joinxss) =
    upper_bind(convex_to_upperxss)convex_to_upper"
by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun)

text ‹Convex to lower›

lemma convex_le_imp_lower_le: "t ≤♮ u  t ≤♭ u"
unfolding convex_le_def by simp

definition
  convex_to_lower :: "'a convex_pd  'a lower_pd" where
  "convex_to_lower = convex_pd.extension lower_principal"

lemma convex_to_lower_principal [simp]:
  "convex_to_lower(convex_principal t) = lower_principal t"
unfolding convex_to_lower_def
apply (rule convex_pd.extension_principal)
apply (rule lower_pd.principal_mono)
apply (erule convex_le_imp_lower_le)
done

lemma convex_to_lower_unit [simp]:
  "convex_to_lower{x}♮ = {x}♭"
by (induct x rule: compact_basis.principal_induct, simp, simp)

lemma convex_to_lower_plus [simp]:
  "convex_to_lower(xs ∪♮ ys) = convex_to_lowerxs ∪♭ convex_to_lowerys"
by (induct xs rule: convex_pd.principal_induct, simp,
    induct ys rule: convex_pd.principal_induct, simp, simp)

lemma convex_to_lower_bind [simp]:
  "convex_to_lower(convex_bindxsf) =
    lower_bind(convex_to_lowerxs)(convex_to_lower oo f)"
by (induct xs rule: convex_pd_induct, simp, simp, simp)

lemma convex_to_lower_map [simp]:
  "convex_to_lower(convex_mapfxs) = lower_mapf(convex_to_lowerxs)"
by (simp add: convex_map_def lower_map_def cfcomp_LAM)

lemma convex_to_lower_join [simp]:
  "convex_to_lower(convex_joinxss) =
    lower_bind(convex_to_lowerxss)convex_to_lower"
by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun)

text ‹Ordering property›

lemma convex_pd_below_iff:
  "(xs  ys) =
    (convex_to_upperxs  convex_to_upperys 
     convex_to_lowerxs  convex_to_lowerys)"
apply (induct xs rule: convex_pd.principal_induct, simp)
apply (induct ys rule: convex_pd.principal_induct, simp)
apply (simp add: convex_le_def)
done

lemmas convex_plus_below_plus_iff =
  convex_pd_below_iff [where xs="xs ∪♮ ys" and ys="zs ∪♮ ws"]
  for xs ys zs ws

lemmas convex_pd_below_simps =
  convex_unit_below_plus_iff
  convex_plus_below_unit_iff
  convex_plus_below_plus_iff
  convex_unit_below_iff
  convex_to_upper_unit
  convex_to_upper_plus
  convex_to_lower_unit
  convex_to_lower_plus
  upper_pd_below_simps
  lower_pd_below_simps

end