Theory Type_Preservation

theory Type_Preservation
  imports "HOL-Nominal.Nominal"
begin

text ‹

  This theory shows how to prove the type preservation
  property for the simply-typed lambda-calculus and 
  beta-reduction.
 
›

atom_decl name

nominal_datatype lam =
  Var "name"
| App "lam" "lam" 
| Lam "«name»lam" ("Lam [_]._")

text ‹Capture-Avoiding Substitution›

nominal_primrec
  subst :: "lam  name  lam  lam"  ("_[_::=_]")
where
  "(Var x)[y::=s] = (if x=y then s else (Var x))"
| "(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
| "x(y,s)  (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)
apply(fresh_guess)+
done

lemma  subst_eqvt[eqvt]:
  fixes pi::"name prm"
  shows "pi(t1[x::=t2]) = (pit1)[(pix)::=(pit2)]"
by (nominal_induct t1 avoiding: x t2 rule: lam.strong_induct)
   (auto simp add: perm_bij fresh_atm fresh_bij)

lemma fresh_fact:
  fixes z::"name"
  shows "zs; (z=y  zt)  zt[y::=s]"
by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
   (auto simp add: abs_fresh fresh_prod fresh_atm)

text ‹Types›

nominal_datatype ty =
    TVar "string"
  | TArr "ty" "ty" ("_  _")

lemma ty_fresh:
  fixes x::"name"
  and   T::"ty"
  shows "xT"
by (induct T rule: ty.induct)
   (auto simp add: fresh_string)

text ‹Typing Contexts›

type_synonym ctx = "(name×ty) list"

abbreviation
  "sub_ctx" :: "ctx  ctx  bool" ("_  _") 
where
  "Γ1  Γ2  x. x  set Γ1  x  set Γ2"

text ‹Validity of Typing Contexts›

inductive
  valid :: "(name×ty) list  bool"
where
    v1[intro]: "valid []"
  | v2[intro]: "valid Γ; xΓ valid ((x,T)#Γ)"

equivariance valid

lemma valid_elim[dest]:
  assumes a: "valid ((x,T)#Γ)"
  shows "xΓ  valid Γ"
using a by (cases) (auto)

lemma valid_insert:
  assumes a: "valid (Δ@[(x,T)]@Γ)"
  shows "valid (Δ @ Γ)" 
using a
by (induct Δ)
   (auto simp add:  fresh_list_append fresh_list_cons dest!: valid_elim)

lemma fresh_set: 
  shows "yxs = (xset xs. yx)"
by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)

lemma context_unique:
  assumes a1: "valid Γ"
  and     a2: "(x,T)  set Γ"
  and     a3: "(x,U)  set Γ"
  shows "T = U" 
using a1 a2 a3
by (induct) (auto simp add: fresh_set fresh_prod fresh_atm)

text ‹Typing Relation›

inductive
  typing :: "ctx  lam  ty  bool" ("_  _ : _") 
where
  t_Var[intro]: "valid Γ; (x,T)set Γ  Γ  Var x : T"
| t_App[intro]: "Γ  t1 : T1T2; Γ  t2 : T1  Γ  App t1 t2 : T2"
| t_Lam[intro]: "xΓ; (x,T1)#Γ  t : T2  Γ  Lam [x].t : T1T2"

equivariance typing
nominal_inductive typing
  by (simp_all add: abs_fresh ty_fresh)

lemma t_Lam_inversion[dest]:
  assumes ty: "Γ  Lam [x].t : T" 
  and     fc: "xΓ" 
  shows "T1 T2. T = T1  T2  (x,T1)#Γ  t : T2"
using ty fc 
by (cases rule: typing.strong_cases) 
   (auto simp add: alpha lam.inject abs_fresh ty_fresh)

lemma t_App_inversion[dest]:
  assumes ty: "Γ  App t1 t2 : T" 
  shows "T'. Γ  t1 : T'  T  Γ  t2 : T'"
using ty 
by (cases) (auto simp add: lam.inject)

lemma weakening: 
  fixes Γ1 Γ2::"ctx"
  assumes a: "Γ1  t : T" 
  and     b: "valid Γ2" 
  and     c: "Γ1  Γ2"
  shows "Γ2  t : T"
using a b c
by (nominal_induct Γ1 t T avoiding: Γ2 rule: typing.strong_induct)
   (auto | atomize)+

lemma type_substitution_aux:
  assumes a: "(Δ@[(x,T')]@Γ)  e : T"
  and     b: "Γ  e' : T'"
  shows "(Δ@Γ)  e[x::=e'] : T" 
using a b 
proof (nominal_induct "Δ@[(x,T')]@Γ" e T avoiding: x e' Δ rule: typing.strong_induct)
  case (t_Var y T x e' Δ)
  then have a1: "valid (Δ@[(x,T')]@Γ)" 
       and  a2: "(y,T)  set (Δ@[(x,T')]@Γ)" 
       and  a3: "Γ  e' : T'" .
  from a1 have a4: "valid (Δ@Γ)" by (rule valid_insert)
  { assume eq: "x=y"
    from a1 a2 have "T=T'" using eq by (auto intro: context_unique)
    with a3 have "Δ@Γ  Var y[x::=e'] : T" using eq a4 by (auto intro: weakening)
  }
  moreover
  { assume ineq: "xy"
    from a2 have "(y,T)  set (Δ@Γ)" using ineq by simp
    then have "Δ@Γ  Var y[x::=e'] : T" using ineq a4 by auto
  }
  ultimately show "Δ@Γ  Var y[x::=e'] : T" by blast
qed (force simp add: fresh_list_append fresh_list_cons)+

corollary type_substitution:
  assumes a: "(x,T')#Γ  e : T"
  and     b: "Γ  e' : T'"
  shows "Γ  e[x::=e'] : T"
using a b
by (auto intro: type_substitution_aux[where Δ="[]",simplified])

text ‹Beta Reduction›

inductive 
  "beta" :: "lamlambool" (" _ β _")
where
  b1[intro]: "t1 β t2  App t1 s β App t2 s"
| b2[intro]: "s1 β s2  App t s1 β App t s2"
| b3[intro]: "t1 β t2  Lam [x].t1 β Lam [x].t2"
| b4[intro]: "xs  App (Lam [x].t) s β t[x::=s]"

equivariance beta
nominal_inductive beta
  by (auto simp add: abs_fresh fresh_fact)


theorem type_preservation:
  assumes a: "t β t'"
  and     b: "Γ  t : T" 
  shows "Γ  t' : T" 
using a b
proof (nominal_induct avoiding: Γ T rule: beta.strong_induct)
  case (b1 t1 t2 s Γ T)
  have "Γ  App t1 s : T" by fact
  then obtain T' where a1: "Γ  t1 : T'  T" and a2: "Γ  s : T'" by auto
  have ih: "Γ  t1 : T'  T  Γ  t2 : T'  T" by fact
  with a1 a2 show "Γ  App t2 s : T" by auto
next 
  case (b2 s1 s2 t Γ T)
  have "Γ  App t s1 : T" by fact
  then obtain T' where a1: "Γ  t : T'  T" and a2: "Γ  s1 : T'" by auto
  have ih: "Γ  s1 : T'  Γ  s2 : T'" by fact
  with a1 a2 show "Γ  App t s2 : T" by auto
next 
  case (b3 t1 t2 x Γ T)
  have vc: "xΓ" by fact
  have "Γ  Lam [x].t1 : T" by fact
  then obtain T1 T2 where a1: "(x,T1)#Γ  t1 : T2" and a2: "T = T1  T2" using vc by auto
  have ih: "(x,T1)#Γ  t1 : T2  (x,T1)#Γ  t2 : T2" by fact
  with a1 a2 show "Γ  Lam [x].t2 : T" using vc by auto
next
  case (b4 x s t Γ T)
  have vc: "xΓ" by fact
  have "Γ  App (Lam [x].t) s : T" by fact
  then obtain T' where a1: "Γ  Lam [x].t : T'  T" and a2: "Γ  s : T'" by auto
  from a1 obtain T1 T2 where a3: "(x,T')#Γ  t : T" using vc by (auto simp add: ty.inject)
  from a3 a2 show "Γ  t[x::=s] : T" by (simp add: type_substitution)
qed


theorem type_preservation_automatic:
  assumes a: "t β t'"
  and     b: "Γ  t : T" 
  shows "Γ  t' : T"
using a b
by (nominal_induct avoiding: Γ T rule: beta.strong_induct)
   (auto dest!: t_Lam_inversion t_App_inversion simp add: ty.inject type_substitution)

end