Maths_quadrature¶
This document is auto-generated for Owl’s APIs. #9 entries have been extracted. timestamp: 2018-04-16 13:12:53
Github: {Signature} {Implementation}
Integration functions¶
val trapz : ?n:int -> ?eps:float -> (float -> float) -> float -> float -> float
trapz f a b computes the integral of f on the interval [a,b] using
the trapezoidal rule, i.e. \(\int_a^b f(x) dx\).
- Parameters:
f: function to be integrated.n: the maximum allowed number of steps. The default value is20.eps: the desired fractional accuracy. The default value is1e-6.a: lower bound of the integrated interval.b: upper bound of the integrated interval.
- Returns:
y: the integral offon[a, b].
val simpson : ?n:int -> ?eps:float -> (float -> float) -> float -> float -> float
simpson f a b computes the integral of f on the interval [a,b] using
the Simpson’s rule, i.e. \(\int_a^b f(x) dx\).
- Parameters:
f: function to be integrated.n: the maximum allowed number of steps. The default value is20.eps: the desired fractional accuracy. The default value is1e-6.a: lower bound of the integrated interval.b: upper bound of the integrated interval.
- Returns:
y: the integral offon[a, b].
val romberg : ?n:int -> ?eps:float -> (float -> float) -> float -> float -> float
romberg f a b computes the integral of f on the interval [a,b] using
the Romberg method, i.e. \(\int_a^b f(x) dx\). Note that this algorithm is
much faster than trapz and simpson.
- Parameters:
f: function to be integrated.n: the maximum allowed number of steps. The default value is20.eps: the desired fractional accuracy. The default value is1e-6.a: lower bound of the integrated interval.b: upper bound of the integrated interval.
- Returns:
y: the integral offon[a, b].
val gaussian_fixed : ?n:int -> (float -> float) -> float -> float -> float
gaussian_fixed f a b computes the integral of f on the interval
[a,b] using the Gaussian quadrature of fixed order. Note that this
algorithm is much faster than others due to cached weights.
- Parameters:
f: function to be integrated.n: the order of polynomial. The default value is10.a: lower bound of the integrated interval.b: upper bound of the integrated interval.
- Returns:
y: the integral offon[a, b].
val gaussian : ?n:int -> ?eps:float -> (float -> float) -> float -> float -> float
gaussian f a b computes the integral of f on the interval [a,b]
using adaptive Gaussian quadrature of fixed tolerance.
- Parameters:
f: function to be integrated.n: the maximum order. The default value is50.eps: the desired fractional accuracy. The default value is1e-6.a: lower bound of the integrated interval.b: upper bound of the integrated interval.
- Returns:
y: the integral offon[a, b].
Helper functions¶
val trapzd : (float -> float) -> float -> float -> int -> float
The function computes the nth stage of refinement of an extended trapezoidal
rule. It is the workhorse of several integration functions including trapz,
simpson, and romberg.
- Parameters:
f: function to be integrated.a: lower bound of the integrated interval.b: upper bound of the integrated interval.n: the nth stage.
- Returns:
y: the integral offon[a, b].
val gauss_legendre : ?eps:float -> ?a:float -> ?b:float -> int -> float array * float array
Given the lower and upper limits of integration a and b, and order
n, the function computes the abscissas and weights of the Gauss-Legendre
n-point quadrature formula.