module Owl_dense_matrix_generic:sig..end
type('a, 'b)t =('a, 'b, Bigarray.c_layout) Bigarray.Array2.t
type('a, 'b)kind =('a, 'b) Bigarray.kind
val empty : ('a, 'b) kind ->
int -> int -> ('a, 'b) tempty m n creates an m by n matrix without initialising the values of
elements in x.val create : ('a, 'b) kind ->
int -> int -> 'a -> ('a, 'b) tcreate m n a creates an m by n matrix and all the elements of x are
initialised with the value a.val init : ('a, 'b) kind ->
int -> int -> (int -> 'a) -> ('a, 'b) tinit m n f creates a matrix x of shape m x n, then using
f to initialise the elements in x. The input of f is 1-dimensional
index of the matrix. You need to explicitly convert it if you need 2D
index. The function Owl_utils._index_1d_nd can help you.val init_nd : ('a, 'b) kind ->
int -> int -> (int -> int -> 'a) -> ('a, 'b) tinit_nd m n f s almost the same as init but f receives 2D index
as input. It is more convenient since you don't have to convert the index by
yourself, but this also means init_nd is slower than init.val zeros : ('a, 'b) kind ->
int -> int -> ('a, 'b) tzeros m n creates an m by n matrix where all the elements are
initialised to zeros.val ones : ('a, 'b) kind ->
int -> int -> ('a, 'b) tones m n creates an m by n matrix where all the elements are ones.val eye : ('a, 'b) kind ->
int -> ('a, 'b) teye m creates an m by m identity matrix.val sequential : ('a, 'b) kind ->
?a:'a -> ?step:'a -> int -> int -> ('a, 'b) tsequential ~a ~step m n creates an m by n matrix. The elements in x
are initialised sequentiallly from ~a and is increased by ~step.
The default value of ~a is zero whilst the default value of ~step is one.
val uniform : ?scale:float ->
('a, 'b) kind ->
int -> int -> ('a, 'b) tuniform m n creates an m by n matrix where all the elements
follow a uniform distribution in (0,1) interval. uniform ~scale:a m n
adjusts the interval to (0,a).val gaussian : ?sigma:float ->
('a, 'b) kind ->
int -> int -> ('a, 'b) tgaussian m n creates an m by n matrix where all the elements in x
follow a Gaussian distribution with specified sigma. By default sigma = 1.val semidef : (float, 'b) kind ->
int -> (float, 'b) t semidef n returns an random n by n positive semi-definite matrix.val linspace : ('a, 'b) kind ->
'a -> 'a -> int -> ('a, 'b) tlinspace a b n linearly divides the interval [a,b] into n pieces by
creating an m by 1 row vector. E.g., linspace 0. 5. 5 will create a
row vector [0;1;2;3;4;5].val logspace : ('a, 'b) kind ->
?base:float -> 'a -> 'a -> int -> ('a, 'b) tlogspace base a b n ... the default value of base is e.val meshgrid : ('a, 'b) kind ->
'a ->
'a ->
'a ->
'a ->
int ->
int ->
('a, 'b) t * ('a, 'b) tmeshgrid a1 b1 a2 b2 n1 n2 is similar to the meshgrid function in
Matlab. It returns two matrices x and y where the row vectors in x are
linearly spaced between [a1,b1] by n1 whilst the column vectors in y
are linearly spaced between (a2,b2) by n2.val meshup : ('a, 'b) t ->
('a, 'b) t ->
('a, 'b) t * ('a, 'b) tmeshup x y creates mesh grids by using two row vectors x and y.val bernoulli : ('a, 'b) kind ->
?p:float -> ?seed:int -> int -> int -> ('a, 'b) tbernoulli k ~p:0.3 m nval diagm : ?k:int ->
('a, 'b) t -> ('a, 'b) tdiagm k v creates a diagonal matrix using the elements in v as
diagonal values. k specifies the main diagonal index. If k > 0 then it is
above the main diagonal, if k < 0 then it is below the main diagonal.
This function is the same as the diag function in Matlab.val triu : ?k:int ->
('a, 'b) t -> ('a, 'b) ttriu k x returns the element on and above the kth diagonal of x.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and
k < 0 is below the main diagonal.val tril : ?k:int ->
('a, 'b) t -> ('a, 'b) ttril k x returns the element on and below the kth diagonal of x.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and
k < 0 is below the main diagonal.val symmetric : ?upper:bool ->
('a, 'b) t -> ('a, 'b) tsymmetric ~upper x creates a symmetric matrix using either upper or lower
triangular part of x. If upper is true then it uses the upper part, if
upper is false, then symmetric uses the lower part. By default upper
is true.val bidiagonal : ?upper:bool ->
('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tbidiagonal upper dv ev creates a bidiagonal matrix using dv and ev.
Both dv and ev are row vectors. dv is the main diagonal. If upper is
true then ev is superdiagonal; if upper is false then ev is
subdiagonal. By default, upper is true.val toeplitz : ?c:('a, 'b) t ->
('a, 'b) t -> ('a, 'b) ttoeplitz ~c r generates a toeplitz matrix using r and c. Both r and
c are row vectors of the same length. If the first elements of c is
different from that of r, r's first element will be used.
Note: 1) If c is not passed in, then c = r will be used. 2) If c is not
passed in and r is complex, the c = conj r will be used. 3) If r and c
have different length, then the result is a rectangular matrix.
val hankel : ?r:('a, 'b) t ->
('a, 'b) t -> ('a, 'b) thankel ~r c generates a hankel matrix using r and c. c will be the
first column and r will be the last row of the returned matrix.
Note: 1) If only c is passed in, the elelments below the anti-diagnoal are
zero. 2) If the last element of c is different from the first element of r
then the first element of c prevails. 3) c and r can have different
length, the return will be an rectangular matrix.
val hadamard : ('a, 'b) kind ->
int -> ('a, 'b) thadamard k n construct a hadamard matrix of order n. For a hadamard H,
we have H'*H = n*I. Currrently, this function handles only the cases where
n, n/12, or n/20 is a power of 2.val shape : ('a, 'b) t -> int * intx is an m by n matrix, shape x returns (m,n), i.e., the size
of two dimensions of x.val row_num : ('a, 'b) t -> introw_num x returns the number of rows in matrix x.val col_num : ('a, 'b) t -> intcol_num x returns the number of columns in matrix x.val numel : ('a, 'b) t -> intnumel x returns the number of elements in matrix x. It is equivalent
to (row_num x) * (col_num x).val nnz : ('a, 'b) t -> intnnz x returns the number of non-zero elements in x.val density : ('a, 'b) t -> floatdensity x returns the percentage of non-zero elements in x.val size_in_bytes : ('a, 'b) t -> intsize_in_bytes x returns the size of x in bytes in memory.val same_shape : ('a, 'b) t ->
('a, 'b) t -> boolsame_shape x y returns true if two matrics have the same shape.val kind : ('a, 'b) t -> ('a, 'b) kindkind x returns the type of matrix x.val get : ('a, 'b) t -> int -> int -> 'aget x i j returns the value of element (i,j) of x. The shorthand
for get x i j is x.{i,j}val set : ('a, 'b) t -> int -> int -> 'a -> unitset x i j a sets the element (i,j) of x to value a. The shorthand
for set x i j a is x.{i,j} <- aval row : ('a, 'b) t ->
int -> ('a, 'b) trow x i returns the row i of x.val col : ('a, 'b) t ->
int -> ('a, 'b) tcol x j returns the column j of x.val rows : ('a, 'b) t ->
int array -> ('a, 'b) trows x a returns the rows (defined in an int array a) of x. The
returned rows will be combined into a new dense matrix. The order of rows in
the new matrix is the same as that in the array a.val cols : ('a, 'b) t ->
int array -> ('a, 'b) trows, cols x a returns the columns (specified in array a)
of x in a new dense matrix.val resize : ?head:bool ->
int ->
int ->
('a, 'b) t -> ('a, 'b) tresize m n x please refer to the Ndarray document.val reshape : int ->
int ->
('a, 'b) t -> ('a, 'b) treshape m n x returns a new m by n matrix from the m' by n'
matrix x. Note that (m * n) must be equal to (m' * n'), and the
returned matrix shares the same memory with the original x.val flatten : ('a, 'b) t -> ('a, 'b) tflatten x reshape x into a 1 by n row vector without making a copy.
Therefore the returned value shares the same memory space with original x.val slice : int list list ->
('a, 'b) t -> ('a, 'b) tslice s x returns a copy of the slice in x. The slice is defined by a
which is an int array. Please refer to the same function in the
Owl_dense_ndarray_generic documentation for more details.val reverse : ('a, 'b) t -> ('a, 'b) treverse x reverse the order of all elements in the flattened x and
returns the results in a new matrix. The original x remains intact.val reset : ('a, 'b) t -> unitreset x resets all the elements of x to zero value.val fill : ('a, 'b) t -> 'a -> unitfill x a fills the x with value a.val clone : ('a, 'b) t -> ('a, 'b) tclone x returns a copy of matrix x.val copy_to : ('a, 'b) t ->
('a, 'b) t -> unitcopy_to x y copies the elements of x to y. x and y must have
the same demensions.val copy_row_to : ('a, 'b) t ->
('a, 'b) t -> int -> unitcopy_row_to v x i copies an 1 by n row vector v to the ith row
in an m by n matrix x.val copy_col_to : ('a, 'b) t ->
('a, 'b) t -> int -> unitcopy_col_to v x j copies an 1 by n column vector v to the jth
column in an m by n matrix x.val concat_vertical : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tconcat_vertical x y concats two matrices x and y vertically,
therefore their column numbers must be the same.val concat_horizontal : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tconcat_horizontal x y concats two matrices x and y horizontally,
therefore their row numbers must be the same.val concatenate : ?axis:int ->
('a, 'b) t array ->
('a, 'b) tconcatenate ~axis:1 x concatenates an array of matrices along the second
dimension. For the matrices in x, they must have the same shape except the
dimension specified by axis. The default value of axis is 0, i.e., the
lowest dimension on a marix, i.e., rows.val transpose : ('a, 'b) t -> ('a, 'b) ttranspose x transposes an m by n matrix to n by m one.val ctranspose : (Complex.t, 'a) t ->
(Complex.t, 'a) tctranspose x performs conjugate transpose of a complex matrix x.val diag : ?k:int ->
('a, 'b) t -> ('a, 'b) tdiag k x returns the kth diagonal elements of x. k > 0 means above
the main diagonal and k < 0 means the below the main diagonal.val replace_row : ('a, 'b) t ->
('a, 'b) t ->
int -> ('a, 'b) treplace_row v x i uses the row vector v to replace the ith row in
the matrix x.val replace_col : ('a, 'b) t ->
('a, 'b) t ->
int -> ('a, 'b) treplace_col v x j uses the column vector v to replace the jth column
in the matrix x.val swap_rows : ('a, 'b) t -> int -> int -> unitswap_rows x i i' swaps the row i with row i' of x.val swap_cols : ('a, 'b) t -> int -> int -> unitswap_cols x j j' swaps the column j with column j' of x.val tile : ('a, 'b) t ->
int array -> ('a, 'b) ttile x a provides the exact behaviour as numpy.tile function.val repeat : ?axis:int ->
('a, 'b) t ->
int -> ('a, 'b) trepeat ~axis x a repeats the elements along ~axis for a times.val pad : ?v:'a ->
int list list ->
('a, 'b) t -> ('a, 'b) tpadd ~v:0. [[1;1]] xval dropout : ?rate:float ->
?seed:int ->
('a, 'b) t -> ('a, 'b) tdropout ~rate:0.3 x drops out 30% of the elements in x, in other words,
by setting their values to zeros.val iteri : (int -> int -> 'a -> unit) -> ('a, 'b) t -> unititeri f x iterates all the elements in x and applies the user defined
function f : int -> int -> float -> 'a. f i j v takes three parameters,
i and j are the coordinates of current element, and v is its value.val iter : ('a -> unit) -> ('a, 'b) t -> unititer f x is the same as as iteri f x except the coordinates of the
current element is not passed to the function f : float -> 'aval mapi : (int -> int -> 'a -> 'a) ->
('a, 'b) t -> ('a, 'b) tmapi f x maps each element in x to a new value by applying
f : int -> int -> float -> float. The first two parameters are the
coordinates of the element, and the third parameter is the value.val map : ('a -> 'a) ->
('a, 'b) t -> ('a, 'b) tmap f x is similar to mapi f x except the coordinates of the
current element is not passed to the function f : float -> floatval map2i : (int -> int -> 'a -> 'a -> 'a) ->
('a, 'b) t ->
('a, 'b) t -> ('a, 'b) t
val map2 : ('a -> 'a -> 'a) ->
('a, 'b) t ->
('a, 'b) t -> ('a, 'b) t
val foldi : (int -> int -> 'c -> 'a -> 'c) ->
'c -> ('a, 'b) t -> 'c
val fold : ('c -> 'a -> 'c) -> 'c -> ('a, 'b) t -> 'cfold f a x folds all the elements in x with the function
f : 'a -> float -> 'a. For an m by n matrix x, the order of folding
is from (0,0) to (m-1,n-1), row by row.val filteri : (int -> int -> 'a -> bool) ->
('a, 'b) t -> (int * int) arrayfilteri f x uses f : int -> int -> float -> bool to filter out certain
elements in x. An element will be included if f returns true. The
returned result is a list of coordinates of the selected elements.val filter : ('a -> bool) -> ('a, 'b) t -> (int * int) arrayfilteri, but the coordinates of the elements are not passed to
the function f : float -> bool.val iteri_rows : (int -> ('a, 'b) t -> unit) ->
('a, 'b) t -> unititeri_rows f x iterates every row in x and applies function
f : int -> mat -> unit to each of them.val iter_rows : (('a, 'b) t -> unit) ->
('a, 'b) t -> unititeri_rows except row number is not passed to f.val iter2i_rows : (int ->
('a, 'b) t ->
('a, 'b) t -> unit) ->
('a, 'b) t ->
('a, 'b) t -> unit
val iter2_rows : (('a, 'b) t ->
('a, 'b) t -> unit) ->
('a, 'b) t ->
('a, 'b) t -> unit
val iteri_cols : (int -> ('a, 'b) t -> unit) ->
('a, 'b) t -> unititeri_cols f x iterates every column in x and applies function
f : int -> mat -> unit to each of them. Column number is passed to f as
the first parameter.val iter_cols : (('a, 'b) t -> unit) ->
('a, 'b) t -> unititeri_cols except col number is not passed to f.val filteri_rows : (int -> ('a, 'b) t -> bool) ->
('a, 'b) t -> int arrayfilteri_rows f x uses function f : int -> mat -> bool to check each
row in x, then returns an int array containing the indices of those rows
which satisfy the function f.val filter_rows : (('a, 'b) t -> bool) ->
('a, 'b) t -> int arrayfilteri_rows except that the row indices are not passed to f.val filteri_cols : (int -> ('a, 'b) t -> bool) ->
('a, 'b) t -> int arrayfilteri_cols f x uses function f : int -> mat -> bool to check each
column in x, then returns an int array containing the indices of those
columns which satisfy the function f.val filter_cols : (('a, 'b) t -> bool) ->
('a, 'b) t -> int arrayfilteri_cols except that the column indices are not passed to f.val fold_rows : ('c -> ('a, 'b) t -> 'c) ->
'c -> ('a, 'b) t -> 'cfold_rows f a x folds all the rows in x using function f. The order
of folding is from the first row to the last one.val fold_cols : ('c -> ('a, 'b) t -> 'c) ->
'c -> ('a, 'b) t -> 'cfold_cols f a x folds all the columns in x using function f. The
order of folding is from the first column to the last one.val mapi_rows : (int -> ('a, 'b) t -> 'c) ->
('a, 'b) t -> 'c arraymapi_rows f x maps every row in x to a type 'a value by applying
function f : int -> mat -> 'a to each of them. The results is an array of
all the returned values.val map_rows : (('a, 'b) t -> 'c) ->
('a, 'b) t -> 'c arraymapi_rows except row number is not passed to f.val mapi_cols : (int -> ('a, 'b) t -> 'c) ->
('a, 'b) t -> 'c arraymapi_cols f x maps every column in x to a type 'a value by applying
function f : int -> mat -> 'a.val map_cols : (('a, 'b) t -> 'c) ->
('a, 'b) t -> 'c arraymapi_cols except column number is not passed to f.val mapi_by_row : int ->
(int ->
('a, 'b) t -> ('a, 'b) t) ->
('a, 'b) t -> ('a, 'b) tmapi_by_row d f x applies f to each row of a m by n matrix x,
then uses the returned d dimensional row vectors to assemble a new
m by d matrix.val map_by_row : int ->
(('a, 'b) t -> ('a, 'b) t) ->
('a, 'b) t -> ('a, 'b) tmap_by_row d f x is similar to mapi_by_row except that the row indices
are not passed to f.val mapi_by_col : int ->
(int ->
('a, 'b) t -> ('a, 'b) t) ->
('a, 'b) t -> ('a, 'b) tmapi_by_col d f x applies f to each column of a m by n matrix x,
then uses the returned d dimensional column vectors to assemble a new
d by n matrix.val map_by_col : int ->
(('a, 'b) t -> ('a, 'b) t) ->
('a, 'b) t -> ('a, 'b) tmap_by_col d f x is similar to mapi_by_col except that the column
indices are not passed to f.val mapi_at_row : (int -> int -> 'a -> 'a) ->
('a, 'b) t ->
int -> ('a, 'b) tmapi_at_row f x i creates a new matrix by applying function f only to
the ith row in matrix x.val map_at_row : ('a -> 'a) ->
('a, 'b) t ->
int -> ('a, 'b) tmap_at_row f x i is similar to mapi_at_row except that the coordinates
of an element is not passed to f.val mapi_at_col : (int -> int -> 'a -> 'a) ->
('a, 'b) t ->
int -> ('a, 'b) tmapi_at_col f x j creates a new matrix by applying function f only to
the jth column in matrix x.val map_at_col : ('a -> 'a) ->
('a, 'b) t ->
int -> ('a, 'b) tmap_at_col f x i is similar to mapi_at_col except that the coordinates
of an element is not passed to f.val exists : ('a -> bool) -> ('a, 'b) t -> boolexists f x checks all the elements in x using f. If at least one
element satisfies f then the function returns true otherwise false.val not_exists : ('a -> bool) -> ('a, 'b) t -> boolnot_exists f x checks all the elements in x, the function returns
true only if all the elements fail to satisfy f : float -> bool.val for_all : ('a -> bool) -> ('a, 'b) t -> boolfor_all f x checks all the elements in x, the function returns true
if and only if all the elements pass the check of function f.val is_zero : ('a, 'b) t -> boolis_zero x returns true if all the elements in x are zeros.val is_positive : ('a, 'b) t -> boolis_positive x returns true if all the elements in x are positive.val is_negative : ('a, 'b) t -> boolis_negative x returns true if all the elements in x are negative.val is_nonpositive : ('a, 'b) t -> boolis_nonpositive returns true if all the elements in x are non-positive.val is_nonnegative : ('a, 'b) t -> boolis_nonnegative returns true if all the elements in x are non-negative.val is_normal : ('a, 'b) t -> boolis_normal x returns true if all the elelments in x are normal float
numbers, i.e., not NaN, not INF, not SUBNORMAL. Please refer to
https://www.gnu.org/software/libc/manual/html_node/Floating-Point-Classes.html
https://www.gnu.org/software/libc/manual/html_node/Infinity-and-NaN.html#Infinity-and-NaN
val not_nan : ('a, 'b) t -> boolnot_nan x returns false if there is any NaN element in x. Otherwise,
the function returns true indicating all the numbers in x are not NaN.val not_inf : ('a, 'b) t -> boolnot_inf x returns false if there is any positive or negative INF
element in x. Otherwise, the function returns true.val equal : ('a, 'b) t ->
('a, 'b) t -> boolequal x y returns true if two matrices x and y are equal.val not_equal : ('a, 'b) t ->
('a, 'b) t -> boolnot_equal x y returns true if there is at least one element in x is
not equal to that in y.val greater : ('a, 'b) t ->
('a, 'b) t -> boolgreater x y returns true if all the elements in x are greater than
the corresponding elements in y.val less : ('a, 'b) t ->
('a, 'b) t -> boolless x y returns true if all the elements in x are smaller than
the corresponding elements in y.val greater_equal : ('a, 'b) t ->
('a, 'b) t -> boolgreater_equal x y returns true if all the elements in x are not
smaller than the corresponding elements in y.val less_equal : ('a, 'b) t ->
('a, 'b) t -> boolless_equal x y returns true if all the elements in x are not
greater than the corresponding elements in y.val elt_equal : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_equal x y performs element-wise = comparison of x and y. Assume
that a is from x and b is the corresponding element of a from y of
the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a = b.val elt_not_equal : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_not_equal x y performs element-wise != comparison of x and y.
Assume that a is from x and b is the corresponding element of a from
y of the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a <> b.val elt_less : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_less x y performs element-wise < comparison of x and y. Assume
that a is from x and b is the corresponding element of a from y of
the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a < b.val elt_greater : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_greater x y performs element-wise > comparison of x and y.
Assume that a is from x and b is the corresponding element of a from
y of the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a > b.val elt_less_equal : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_less_equal x y performs element-wise <= comparison of x and y.
Assume that a is from x and b is the corresponding element of a from
y of the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a <= b.val elt_greater_equal : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) telt_greater_equal x y performs element-wise >= comparison of x and y.
Assume that a is from x and b is the corresponding element of a from
y of the same position. The function returns another binary (0 and 1)
ndarray/matrix wherein 1 indicates a >= b.val equal_scalar : ('a, 'b) t -> 'a -> boolequal_scalar x a checks if all the elements in x are equal to a. The
function returns true iff for every element b in x, b = a.val not_equal_scalar : ('a, 'b) t -> 'a -> boolnot_equal_scalar x a checks if all the elements in x are not equal to a.
The function returns true iff for every element b in x, b <> a.val less_scalar : ('a, 'b) t -> 'a -> boolless_scalar x a checks if all the elements in x are less than a.
The function returns true iff for every element b in x, b < a.val greater_scalar : ('a, 'b) t -> 'a -> boolgreater_scalar x a checks if all the elements in x are greater than a.
The function returns true iff for every element b in x, b > a.val less_equal_scalar : ('a, 'b) t -> 'a -> boolless_equal_scalar x a checks if all the elements in x are less or equal
to a. The function returns true iff for every element b in x, b <= a.val greater_equal_scalar : ('a, 'b) t -> 'a -> boolgreater_equal_scalar x a checks if all the elements in x are greater or
equal to a. The function returns true iff for every element b in x,
b >= a.val elt_equal_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_equal_scalar x a performs element-wise = comparison of x and a.
Assume that b is one element from x The function returns another binary
(0 and 1) ndarray/matrix wherein 1 of the corresponding position
indicates a = b, otherwise 0.val elt_not_equal_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_not_equal_scalar x a performs element-wise != comparison of x and
a. Assume that b is one element from x The function returns another
binary (0 and 1) ndarray/matrix wherein 1 of the corresponding position
indicates a <> b, otherwise 0.val elt_less_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_less_scalar x a performs element-wise < comparison of x and a.
Assume that b is one element from x The function returns another binary
(0 and 1) ndarray/matrix wherein 1 of the corresponding position
indicates a < b, otherwise 0.val elt_greater_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_greater_scalar x a performs element-wise > comparison of x and a.
Assume that b is one element from x The function returns another binary
(0 and 1) ndarray/matrix wherein 1 of the corresponding position
indicates a > b, otherwise 0.val elt_less_equal_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_less_equal_scalar x a performs element-wise <= comparison of x and
a. Assume that b is one element from x The function returns another
binary (0 and 1) ndarray/matrix wherein 1 of the corresponding position
indicates a <= b, otherwise 0.val elt_greater_equal_scalar : ('a, 'b) t ->
'a -> ('a, 'b) telt_greater_equal_scalar x a performs element-wise >= comparison of x
and a. Assume that b is one element from x The function returns
another binary (0 and 1) ndarray/matrix wherein 1 of the corresponding
position indicates a >= b, otherwise 0.val approx_equal : ?eps:float ->
('a, 'b) t ->
('a, 'b) t -> boolapprox_equal ~eps x y returns true if x and y are approximately
equal, i.e., for any two elements a from x and b from y, we have
abs (a - b) < eps.
Note: the threshold check is exclusive for passed in eps.
val approx_equal_scalar : ?eps:float -> ('a, 'b) t -> 'a -> boolapprox_equal_scalar ~eps x a returns true all the elements in x are
approximately equal to a, i.e., abs (x - a) < eps. For complex numbers,
the eps applies to both real and imaginary part.
Note: the threshold check is exclusive for the passed in eps.
val approx_elt_equal : ?eps:float ->
('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tapprox_elt_equal ~eps x y compares the element-wise equality of x and
y, then returns another binary (i.e., 0 and 1) ndarray/matrix wherein
1 indicates that two corresponding elements a from x and b from y
are considered as approximately equal, namely abs (a - b) < eps.val approx_elt_equal_scalar : ?eps:float ->
('a, 'b) t ->
'a -> ('a, 'b) tapprox_elt_equal_scalar ~eps x a compares all the elements of x to a
scalar value a, then returns another binary (i.e., 0 and 1)
ndarray/matrix wherein 1 indicates that the element b from x is
considered as approximately equal to a, namely abs (a - b) < eps.val draw_rows : ?replacement:bool ->
('a, 'b) t ->
int -> ('a, 'b) t * int arraydraw_rows x m draws m rows randomly from x. The row indices are also
returned in an int array along with the selected rows. The parameter
replacement indicates whether the drawing is by replacement or not.val draw_cols : ?replacement:bool ->
('a, 'b) t ->
int -> ('a, 'b) t * int arraydraw_cols x m draws m cols randomly from x. The column indices are
also returned in an int array along with the selected columns. The parameter
replacement indicates whether the drawing is by replacement or not.val draw_rows2 : ?replacement:bool ->
('a, 'b) t ->
('a, 'b) t ->
int ->
('a, 'b) t * ('a, 'b) t *
int arraydraw_rows2 x y c is similar to draw_rows but applies to two matrices.val draw_cols2 : ?replacement:bool ->
('a, 'b) t ->
('a, 'b) t ->
int ->
('a, 'b) t * ('a, 'b) t *
int arraydraw_col2 x y c is similar to draw_cols but applies to two matrices.val shuffle_rows : ('a, 'b) t -> ('a, 'b) tshuffle_rows x shuffles all the rows in matrix x.val shuffle_cols : ('a, 'b) t -> ('a, 'b) tshuffle_cols x shuffles all the columns in matrix x.val shuffle : ('a, 'b) t -> ('a, 'b) tshuffle x shuffles all the elements in x by first shuffling along the
rows then shuffling along columns. It is equivalent to shuffle_cols (shuffle_rows x).val to_array : ('a, 'b) t -> 'a arrayto_array x flattens an m by n matrix x then returns x as an
float array of length (numel x).val of_array : ('a, 'b) kind ->
'a array -> int -> int -> ('a, 'b) tof_array x m n converts a float array x into an m by n matrix. Note the
length of x must be equal to (m * n).val to_arrays : ('a, 'b) t -> 'a array arrayto arrays x returns an array of float arrays, wherein each row in x
becomes an array in the result.val of_arrays : ('a, 'b) kind ->
'a array array -> ('a, 'b) tof_arrays x converts an array of m float arrays (of length n) in to
an m by n matrix.val to_ndarray : ('a, 'b) t -> ('a, 'b) Owl_dense_ndarray_generic.tto_ndarray x transforms a dense real matrix to Bigarray.Genarray.t type.
No copy is made by calling this function.val of_ndarray : ('a, 'b) Owl_dense_ndarray_generic.t -> ('a, 'b) tof_ndarray x transforms a ndarray of type Bigarray.Genarray.t to a dense
real matrix type. No copy is made by calling this function.val to_rows : ('a, 'b) t ->
('a, 'b) t array
val of_rows : ('a, 'b) t array ->
('a, 'b) t
val to_cols : ('a, 'b) t ->
('a, 'b) t array
val of_cols : ('a, 'b) t array ->
('a, 'b) t
val print : ('a, 'b) t -> unitprint x pretty prints matrix x without headings.val pp_dsmat : ('a, 'b) t -> unitpp_spmat x pretty prints matrix x with headings. Toplevel uses this
function to print out the matrices.val save : ('a, 'b) t -> string -> unitsave x f saves the matrix x to a file with the name f. The format
is binary by using Marshal module to serialise the matrix.val load : ('a, 'b) kind ->
string -> ('a, 'b) tload f loads a sparse matrix from file f. The file must be previously
saved by using save function.val save_txt : ('a, 'b) t -> string -> unitsave_txt x f save the matrix x into a text file f. The operation can
be very time consuming.val load_txt : (float, 'a) kind ->
string -> (float, 'a) tload_txt f load a text file f into a matrix.val re_c2s : (Complex.t, Bigarray.complex32_elt) t ->
(float, Bigarray.float32_elt) tre_c2s x returns all the real components of x in a new ndarray of same shape.val re_z2d : (Complex.t, Bigarray.complex64_elt) t ->
(float, Bigarray.float64_elt) tre_d2z x returns all the real components of x in a new ndarray of same shape.val im_c2s : (Complex.t, Bigarray.complex32_elt) t ->
(float, Bigarray.float32_elt) tim_c2s x returns all the imaginary components of x in a new ndarray of same shape.val im_z2d : (Complex.t, Bigarray.complex64_elt) t ->
(float, Bigarray.float64_elt) tim_d2z x returns all the imaginary components of x in a new ndarray of same shape.val min : (float, 'a) t -> floatmin x returns the minimum value of all elements in x.val max : (float, 'a) t -> floatmax x returns the maximum value of all elements in x.val minmax : (float, 'a) t -> float * floatminmax x returns both the minimum and minimum values in x.val min_i : (float, 'a) t -> float * int * int
val max_i : (float, 'a) t -> float * int * int
val minmax_i : (float, 'a) t ->
(float * int * int) * (float * int * int)
val inv : ('a, 'b) t -> ('a, 'b) tinv x returns the inverse of a square matrix x.val trace : ('a, 'b) t -> 'atrace x returns the sum of diagonal elements in x.val sum : ('a, 'b) t -> 'asum x returns the summation of all the elements in x.val prod : ('a, 'b) t -> 'aprod x returns the product of all the elements in x.val average : ('a, 'b) t -> 'aaverage x returns the average value of all the elements in x. It is
equivalent to calculate sum x divided by numel xval sum_rows : ('a, 'b) t -> ('a, 'b) tsum_rows x returns the summation of all the row vectors in x.val sum_cols : ('a, 'b) t -> ('a, 'b) tsum_cols returns the summation of all the column vectors in x.val average_rows : ('a, 'b) t -> ('a, 'b) taverage_rows x returns the average value of all row vectors in x. It is
equivalent to div_scalar (sum_rows x) (float_of_int (row_num x)).val average_cols : ('a, 'b) t -> ('a, 'b) taverage_cols x returns the average value of all column vectors in x.
It is equivalent to div_scalar (sum_cols x) (float_of_int (col_num x)).val min_rows : (float, 'b) t -> (float * int * int) arraymin_rows x returns the minimum value in each row along with their coordinates.val min_cols : (float, 'b) t -> (float * int * int) arraymin_cols x returns the minimum value in each column along with their coordinates.val max_rows : (float, 'b) t -> (float * int * int) arraymax_rows x returns the maximum value in each row along with their coordinates.val max_cols : (float, 'b) t -> (float * int * int) arraymax_cols x returns the maximum value in each column along with their coordinates.val abs : (float, 'a) t ->
(float, 'a) tabs x returns the absolute value of all elements in x in a new matrix.val abs_c2s : (Complex.t, Bigarray.complex32_elt) t ->
(float, Bigarray.float32_elt) tabs_c2s x is similar to abs but takes complex32 as input.val abs_z2d : (Complex.t, Bigarray.complex64_elt) t ->
(float, Bigarray.float64_elt) tabs_z2d x is similar to abs but takes complex64 as input.val abs2 : (float, 'a) t ->
(float, 'a) tabs2 x returns the square of absolute value of all elements in x in a new ndarray.val abs2_c2s : (Complex.t, Bigarray.complex32_elt) t ->
(float, Bigarray.float32_elt) tabs2_c2s x is similar to abs2 but takes complex32 as input.val abs2_z2d : (Complex.t, Bigarray.complex64_elt) t ->
(float, Bigarray.float64_elt) tabs2_z2d x is similar to abs2 but takes complex64 as input.val conj : ('a, 'b) t -> ('a, 'b) tconj x computes the conjugate of the elements in x and returns the
result in a new matrix. If the passed in x is a real matrix, the function
simply returns a copy of the original x.val neg : ('a, 'b) t -> ('a, 'b) tneg x negates the elements in x and returns the result in a new matrix.val reci : ('a, 'b) t -> ('a, 'b) treci x computes the reciprocal of every elements in x and returns the
result in a new ndarray.val signum : (float, 'a) t ->
(float, 'a) tsignum computes the sign value (-1 for negative numbers, 0 (or -0)
for zero, 1 for positive numbers, nan for nan).val sqr : (float, 'a) t ->
(float, 'a) tsqr x computes the square of the elements in x and returns the result in
a new matrix.val sqrt : (float, 'a) t ->
(float, 'a) tsqrt x computes the square root of the elements in x and returns the
result in a new matrix.val cbrt : (float, 'a) t ->
(float, 'a) tcbrt x computes the cubic root of the elements in x and returns the
result in a new matrix.val exp : (float, 'a) t ->
(float, 'a) texp x computes the exponential of the elements in x and returns the
result in a new matrix.val exp2 : (float, 'a) t ->
(float, 'a) texp2 x computes the base-2 exponential of the elements in x and returns
the result in a new matrix.val exp10 : (float, 'a) t ->
(float, 'a) texp2 x computes the base-10 exponential of the elements in x and returns
the result in a new matrix.val expm1 : (float, 'a) t ->
(float, 'a) texpm1 x computes exp x -. 1. of the elements in x and returns the
result in a new matrix.val log : (float, 'a) t ->
(float, 'a) tlog x computes the logarithm of the elements in x and returns the
result in a new matrix.val log10 : (float, 'a) t ->
(float, 'a) tlog10 x computes the base-10 logarithm of the elements in x and returns
the result in a new matrix.val log2 : (float, 'a) t ->
(float, 'a) tlog2 x computes the base-2 logarithm of the elements in x and returns
the result in a new matrix.val log1p : (float, 'a) t ->
(float, 'a) tlog1p x computes log (1 + x) of the elements in x and returns the
result in a new matrix.val sin : (float, 'a) t ->
(float, 'a) tsin x computes the sine of the elements in x and returns the result in
a new matrix.val cos : (float, 'a) t ->
(float, 'a) tcos x computes the cosine of the elements in x and returns the result in
a new matrix.val tan : (float, 'a) t ->
(float, 'a) ttan x computes the tangent of the elements in x and returns the result
in a new matrix.val asin : (float, 'a) t ->
(float, 'a) tasin x computes the arc sine of the elements in x and returns the result
in a new matrix.val acos : (float, 'a) t ->
(float, 'a) tacos x computes the arc cosine of the elements in x and returns the
result in a new matrix.val atan : (float, 'a) t ->
(float, 'a) tatan x computes the arc tangent of the elements in x and returns the
result in a new matrix.val sinh : (float, 'a) t ->
(float, 'a) tsinh x computes the hyperbolic sine of the elements in x and returns
the result in a new matrix.val cosh : (float, 'a) t ->
(float, 'a) tcosh x computes the hyperbolic cosine of the elements in x and returns
the result in a new matrix.val tanh : (float, 'a) t ->
(float, 'a) ttanh x computes the hyperbolic tangent of the elements in x and returns
the result in a new matrix.val asinh : (float, 'a) t ->
(float, 'a) tasinh x computes the hyperbolic arc sine of the elements in x and
returns the result in a new matrix.val acosh : (float, 'a) t ->
(float, 'a) tacosh x computes the hyperbolic arc cosine of the elements in x and
returns the result in a new matrix.val atanh : (float, 'a) t ->
(float, 'a) tatanh x computes the hyperbolic arc tangent of the elements in x and
returns the result in a new matrix.val floor : ('a, 'b) t -> ('a, 'b) tfloor x computes the floor of the elements in x and returns the result
in a new matrix.val ceil : ('a, 'b) t -> ('a, 'b) tceil x computes the ceiling of the elements in x and returns the result
in a new matrix.val round : ('a, 'b) t -> ('a, 'b) tround x rounds the elements in x and returns the result in a new matrix.val trunc : ('a, 'b) t -> ('a, 'b) ttrunc x computes the truncation of the elements in x and returns the
result in a new matrix.val modf : ('a, 'b) t ->
('a, 'b) t * ('a, 'b) tmodf x performs modf over all the elements in x, the fractal part is
saved in the first element of the returned tuple whereas the integer part is
saved in the second element.val erf : (float, 'a) t ->
(float, 'a) terf x computes the error function of the elements in x and returns the
result in a new matrix.val erfc : (float, 'a) t ->
(float, 'a) terfc x computes the complementary error function of the elements in x
and returns the result in a new matrix.val logistic : (float, 'a) t ->
(float, 'a) tlogistic x computes the logistic function 1/(1 + exp(-a) of the elements
in x and returns the result in a new matrix.val relu : (float, 'a) t ->
(float, 'a) trelu x computes the rectified linear unit function max(x, 0) of the
elements in x and returns the result in a new matrix.val elu : ?alpha:float ->
(float, 'a) t ->
(float, 'a) tOwl_dense_ndarray_generic.eluval leaky_relu : ?alpha:float ->
(float, 'a) t ->
(float, 'a) tOwl_dense_ndarray_generic.leaky_reluval softplus : (float, 'a) t ->
(float, 'a) tsoftplus x computes the softplus function log(1 + exp(x) of the elements
in x and returns the result in a new matrix.val softsign : (float, 'a) t ->
(float, 'a) tsoftsign x computes the softsign function x / (1 + abs(x)) of the
elements in x and returns the result in a new matrix.val softmax : (float, 'a) t ->
(float, 'a) tsoftmax x computes the softmax functions (exp x) / (sum (exp x)) of
all the elements in x and returns the result in a new array.val sigmoid : (float, 'a) t ->
(float, 'a) tsigmoid x computes the sigmoid function 1 / (1 + exp (-x)) for each
element in x.val log_sum_exp : (float, 'a) t -> floatlog_sum_exp x computes the logarithm of the sum of exponentials of all
the elements in x.val l1norm : ('a, 'b) t -> floatl1norm x calculates the l1-norm of all the element in x.val l2norm : ('a, 'b) t -> floatl2norm x calculates the l2-norm of all the element in x.val l2norm_sqr : ('a, 'b) t -> floatl2norm_sqr x calculates the sum of 2-norm (or l2norm, Euclidean norm) of all
elements in x. The function uses conjugate transpose in the product, hence
it always returns a float number.val max_pool : ?padding:Owl_dense_ndarray_generic.padding ->
(float, 'a) t ->
int array -> int array -> (float, 'a) tval avg_pool : ?padding:Owl_dense_ndarray_generic.padding ->
(float, 'a) t ->
int array -> int array -> (float, 'a) tval cumsum : ?axis:int ->
('a, 'b) t -> ('a, 'b) tcumsum ~axis x, refer to the documentation in Owl_dense_ndarray_generic.val cumprod : ?axis:int ->
('a, 'b) t -> ('a, 'b) tcumprod ~axis x, refer to the documentation in Owl_dense_ndarray_generic.val add : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tadd x y adds all the elements in x and y elementwise, and returns the
result in a new matrix.val sub : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tsub x y subtracts all the elements in x and y elementwise, and returns
the result in a new matrix.val mul : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tmul x y multiplies all the elements in x and y elementwise, and
returns the result in a new matrix.val div : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tdiv x y divides all the elements in x and y elementwise, and returns
the result in a new matrix.val add_scalar : ('a, 'b) t ->
'a -> ('a, 'b) tadd_scalar x a adds a scalar value a to all the elements in x, and
returns the result in a new matrix.val sub_scalar : ('a, 'b) t ->
'a -> ('a, 'b) tsub_scalar x a subtracts a scalar value a to all the elements in x,
and returns the result in a new matrix.val mul_scalar : ('a, 'b) t ->
'a -> ('a, 'b) tmul_scalar x a multiplies a scalar value a to all the elements in x,
and returns the result in a new matrix.val div_scalar : ('a, 'b) t ->
'a -> ('a, 'b) tdiv_scalar x a divides a scalar value a to all the elements in x, and
returns the result in a new matrix.val scalar_add : 'a ->
('a, 'b) t -> ('a, 'b) tscalar_add a x is similar to add_scalar but with scalar as the first parameter.val scalar_sub : 'a ->
('a, 'b) t -> ('a, 'b) tscalar_sub a x is similar to sub_scalar but with scalar as the first parameter.val scalar_mul : 'a ->
('a, 'b) t -> ('a, 'b) tscalar_mul a x is similar to mul_scalar but with scalar as the first parameter.val scalar_div : 'a ->
('a, 'b) t -> ('a, 'b) tscalar_div a x is similar to div_scalar but with scalar as the first parameter.val dot : ('a, 'b) t ->
('a, 'b) t -> ('a, 'b) tdot x y returns the dot product of matrix x and y.val add_diag : ('a, 'b) t ->
'a -> ('a, 'b) t
val pow : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) tpow x y computes pow(a, b) of all the elements in x and y
elementwise, and returns the result in a new matrix.val scalar_pow : float ->
(float, 'a) t ->
(float, 'a) tscalar_pow a xval pow_scalar : (float, 'a) t ->
float -> (float, 'a) tpow_scalar x aval atan2 : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) tatan2 x y computes atan2(a, b) of all the elements in x and y
elementwise, and returns the result in a new matrix.val scalar_atan2 : float ->
(float, 'a) t ->
(float, 'a) tscalar_atan2 a xval atan2_scalar : (float, 'a) t ->
float -> (float, 'a) tscalar_atan2 x aval hypot : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) thypot x y computes sqrt(x*x + y*y) of all the elements in x and y
elementwise, and returns the result in a new matrix.val min2 : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) tmin2 x y computes the minimum of all the elements in x and y
elementwise, and returns the result in a new matrix.val max2 : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) tmax2 x y computes the maximum of all the elements in x and y
elementwise, and returns the result in a new matrix.val fmod : (float, 'a) t ->
(float, 'a) t ->
(float, 'a) tfmod x y performs float mod division.val fmod_scalar : (float, 'a) t ->
float -> (float, 'a) tfmod_scalar x a performs mod division between x and scalar a.val scalar_fmod : float ->
(float, 'a) t ->
(float, 'a) tscalar_fmod x a performs mod division between scalar a and x.val ssqr : ('a, 'b) t -> 'a -> 'assqr x a computes the sum of squared differences of all the elements in
x from constant a. This function only computes the square of each element
rather than the conjugate transpose as sqr_nrm2 does.val ssqr_diff : ('a, 'b) t ->
('a, 'b) t -> 'assqr_diff x y computes the sum of squared differences of every elements in
x and its corresponding element in y.val cross_entropy : (float, 'a) t ->
(float, 'a) t -> floatcross_entropy x y calculates the cross entropy between x and y using base e.val clip_by_l2norm : float ->
(float, 'a) t ->
(float, 'a) tclip_by_l2norm t x clips the x according to the threshold set by t.val cast_s2d : (float, Bigarray.float32_elt) t ->
(float, Bigarray.float64_elt) tcast_s2d x casts x from float32 to float64.val cast_d2s : (float, Bigarray.float64_elt) t ->
(float, Bigarray.float32_elt) tcast_d2s x casts x from float64 to float32.val cast_c2z : (Complex.t, Bigarray.complex32_elt) t ->
(Complex.t, Bigarray.complex64_elt) tcast_c2z x casts x from complex32 to complex64.val cast_z2c : (Complex.t, Bigarray.complex64_elt) t ->
(Complex.t, Bigarray.complex32_elt) tcast_z2c x casts x from complex64 to complex32.val cast_s2c : (float, Bigarray.float32_elt) t ->
(Complex.t, Bigarray.complex32_elt) tcast_s2c x casts x from float32 to complex32.val cast_d2z : (float, Bigarray.float64_elt) t ->
(Complex.t, Bigarray.complex64_elt) tcast_d2z x casts x from float64 to complex64.val cast_s2z : (float, Bigarray.float32_elt) t ->
(Complex.t, Bigarray.complex64_elt) tcast_s2z x casts x from float32 to complex64.val cast_d2c : (float, Bigarray.float64_elt) t ->
(Complex.t, Bigarray.complex32_elt) tcast_d2c x casts x from float64 to complex32.