include module type of sig ... end
include Base.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
val t_sexp_grammar : Base.Sexp.Private.Raw_grammar.t
include Base.Floatable.S with type t := t
include Base.Intable.S with type t := t
include Base.Identifiable.S with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
include Base.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
include Base.Stringable.S with type t := t
include Base.Comparable.S with type t := t
val ascending : t -> t -> int
ascending
is identical tocompare
.descending x y = ascending y x
. These are intended to be mnemonic when used likeList.sort ~compare:ascending
andList.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
between t ~low ~high
meanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> t
clamp_exn t ~min ~max
returnst'
, the closest value tot
such thatbetween t' ~low:min ~high:max
is true.Raises if
not (min <= max)
.
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
include Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Base.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.check
val validate_non_negative : t Base.Validate.check
val validate_negative : t Base.Validate.check
val validate_non_positive : t Base.Validate.check
val is_positive : t -> bool
val is_non_negative : t -> bool
val is_negative : t -> bool
val is_non_positive : t -> bool
val sign : t -> Base__Sign0.t
Returns
Neg
,Zero
, orPos
in a way consistent with the above functions.
include Base.Invariant.S with type t := t
val invariant : t -> unit
module Hex : sig ... end
val to_string_hum : ?delimiter:char -> t -> string
delimiter
is an underscore by default.
Infix operators and constants
val zero : t
val one : t
val minus_one : t
val (+) : t -> t -> t
val (-) : t -> t -> t
val (*) : t -> t -> t
val (**) : t -> t -> t
Integer exponentiation
val (/%) : t -> t -> t
val (%) : t -> t -> t
val (/) : t -> t -> t
val rem : t -> t -> t
val (//) : t -> t -> float
Float division of integers.
Other common functions
val abs : t -> t
Returns the absolute value of the argument. May be negative if the input is
min_value
.
Successor and predecessor functions
Exponentiation
val pow : t -> t -> t
pow base exponent
returnsbase
raised to the power ofexponent
. It is OK ifbase <= 0
.pow
raises ifexponent < 0
, or an integer overflow would occur.
Bit-wise logical operations
val bit_and : t -> t -> t
These are identical to
land
,lor
, etc. except they're not infix and have different names.
val bit_or : t -> t -> t
val bit_xor : t -> t -> t
val bit_not : t -> t
val popcount : t -> int
Returns the number of 1 bits in the binary representation of the input.
Bit-shifting operations
Increment and decrement functions for integer references
Conversion functions to related integer types
val of_int32_exn : int32 -> t
val to_int32_exn : t -> int32
val of_int64_exn : int64 -> t
val to_int64 : t -> int64
val of_nativeint_exn : nativeint -> t
val to_nativeint_exn : t -> nativeint
val of_float_unchecked : float -> t
of_float_unchecked
truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
val num_bits : int
The number of bits available in this integer type. Note that the integer representations are signed.
val max_value : t
The largest representable integer.
val min_value : t
The smallest representable integer.
val shift_right_logical : t -> int -> t
Shifts right, filling in with zeroes, which will not preserve the sign of the input.
val ceil_pow2 : t -> t
ceil_pow2 x
returns the smallest power of 2 that is greater than or equal tox
. The implementation may only be called forx > 0
. Example:ceil_pow2 17 = 32
val floor_pow2 : t -> t
floor_pow2 x
returns the largest power of 2 that is less than or equal tox
. The implementation may only be called forx > 0
. Example:floor_pow2 17 = 16
val ceil_log2 : t -> int
ceil_log2 x
returns the ceiling of log-base-2 ofx
, and raises ifx <= 0
.
val floor_log2 : t -> int
floor_log2 x
returns the floor of log-base-2 ofx
, and raises ifx <= 0
.
val is_pow2 : t -> bool
is_pow2 x
returns true iffx
is a power of 2.is_pow2
raises ifx <= 0
.
val clz : t -> int
Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits
.The results are unspecified for
t = 0
.
val ctz : t -> int
Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits
.The results are unspecified for
t = 0
.
module O : sig ... end
A sub-module designed to be opened to make working with ints more convenient.
Conversion functions
val of_int : int -> t
val to_int : t -> int option
val of_int32 : int32 -> t
val to_int32 : t -> int32 option
val of_nativeint : nativeint -> t
val to_nativeint : t -> nativeint
val of_int64 : int64 -> t option
Truncating conversions
Byte swap functions
include Int_intf.Extension with type t := t and type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
This function only needs implementation if
t
exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variantt
afterwards.
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
include Typerep_lib.Typerepable.S with type t := t
val typerep_of_t : t Typerep_lib.Std_internal.Typerep.t
val typename_of_t : t Typerep_lib.Typename.t
include Int_intf.Hexable with type t := t
module Hex : sig ... end
include Identifiable.S with type comparator_witness := comparator_witness and type t := t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
This function only needs implementation if
t
exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variantt
afterwards.
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
include Identifiable.S_common with type t := t
val compare : t -> t -> Base.Int.t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
include Base.Stringable.S with type t := t
include Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Comparable.S_binable with type comparator_witness := comparator_witness and type t := t
include Base.Comparable.S with type comparator_witness := comparator_witness and type t := t
val ascending : t -> t -> int
ascending
is identical tocompare
.descending x y = ascending y x
. These are intended to be mnemonic when used likeList.sort ~compare:ascending
andList.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
between t ~low ~high
meanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> t
clamp_exn t ~min ~max
returnst'
, the closest value tot
such thatbetween t' ~low:min ~high:max
is true.Raises if
not (min <= max)
.
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type comparator_witness := comparator_witness and type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
module Replace_polymorphic_compare : sig ... end
include Comparator.S with type comparator_witness := comparator_witness and type t := t
val comparator : (t, comparator_witness) Comparator.comparator
module Map : Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witness
include Hashable.S_binable with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
val hashable : t Hashtbl.Hashable.t
module Table : Hashtbl.S_binable with type key = t
module Hash_set : Hash_set.S_binable with type elt = t
module Hash_queue : Hash_queue.S with type key = t
include Quickcheckable.S_int with type t := t
include Quickcheck_intf.S_range with type t := t
include Quickcheck_intf.S with type t := t
val quickcheck_generator : t Base_quickcheck.Generator.t
val quickcheck_observer : t Base_quickcheck.Observer.t
val quickcheck_shrinker : t Base_quickcheck.Shrinker.t
val gen_incl : t -> t -> t Base_quickcheck.Generator.t
gen_incl lower_bound upper_bound
produces values betweenlower_bound
andupper_bound
, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises iflower_bound > upper_bound
.
val gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.t
gen_uniform_incl lower_bound upper_bound
produces a generator for values uniformly distributed betweenlower_bound
andupper_bound
, inclusive. Raises iflower_bound > upper_bound
.
val gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.t
gen_log_uniform_incl lower_bound upper_bound
produces a generator for values betweenlower_bound
andupper_bound
, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if(lower_bound < 0) || (lower_bound > upper_bound)
.
val gen_log_incl : t -> t -> t Base_quickcheck.Generator.t
gen_log_incl lower_bound upper_bound
is likegen_log_uniform_incl
, but weighted slightly more in favor of generatinglower_bound
andupper_bound
specifically.