Interface from Base
include module type of sig ... end
include Base.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
val t_sexp_grammar : Base.Sexp.Private.Raw_grammar.t
include Base.Floatable.S with type t := t
include Base.Intable.S with type t := t
include Base.Identifiable.S with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_value
include Base.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
include Base.Stringable.S with type t := t
include Base.Comparable.S with type t := t
val ascending : t -> t -> intascendingis identical tocompare.descending x y = ascending y x. These are intended to be mnemonic when used likeList.sort ~compare:ascendingandList.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> intval between : t -> low:t -> high:t -> boolbetween t ~low ~highmeanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> tclamp_exn t ~min ~maxreturnst', the closest value totsuch thatbetween t' ~low:min ~high:maxis true.Raises if
not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
include Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Base.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.checkval validate_non_negative : t Base.Validate.checkval validate_negative : t Base.Validate.checkval validate_non_positive : t Base.Validate.checkval is_positive : t -> boolval is_non_negative : t -> boolval is_negative : t -> boolval is_non_positive : t -> boolval sign : t -> Base__Sign0.tReturns
Neg,Zero, orPosin a way consistent with the above functions.
include Base.Invariant.S with type t := t
val invariant : t -> unit
module Hex : sig ... endval to_string_hum : ?delimiter:char -> t -> stringdelimiteris an underscore by default.
Infix operators and constants
val zero : tval one : tval minus_one : tval (+) : t -> t -> tval (-) : t -> t -> tval (*) : t -> t -> tval (**) : t -> t -> tInteger exponentiation
val (/%) : t -> t -> tval (%) : t -> t -> tval (/) : t -> t -> tval rem : t -> t -> tval (//) : t -> t -> floatFloat division of integers.
Other common functions
val abs : t -> tReturns the absolute value of the argument. May be negative if the input is
min_value.
Successor and predecessor functions
Exponentiation
val pow : t -> t -> tpow base exponentreturnsbaseraised to the power ofexponent. It is OK ifbase <= 0.powraises ifexponent < 0, or an integer overflow would occur.
Bit-wise logical operations
val bit_and : t -> t -> tThese are identical to
land,lor, etc. except they're not infix and have different names.
val bit_or : t -> t -> tval bit_xor : t -> t -> tval bit_not : t -> tval popcount : t -> intReturns the number of 1 bits in the binary representation of the input.
Bit-shifting operations
Increment and decrement functions for integer references
Conversion functions to related integer types
val of_int32_exn : int32 -> tval to_int32_exn : t -> int32val of_int64_exn : int64 -> tval to_int64 : t -> int64val of_nativeint_exn : nativeint -> tval to_nativeint_exn : t -> nativeintval of_float_unchecked : float -> tof_float_uncheckedtruncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
val num_bits : intThe number of bits available in this integer type. Note that the integer representations are signed.
val max_value : tThe largest representable integer.
val min_value : tThe smallest representable integer.
val shift_right_logical : t -> int -> tShifts right, filling in with zeroes, which will not preserve the sign of the input.
val ceil_pow2 : t -> tceil_pow2 xreturns the smallest power of 2 that is greater than or equal tox. The implementation may only be called forx > 0. Example:ceil_pow2 17 = 32
val floor_pow2 : t -> tfloor_pow2 xreturns the largest power of 2 that is less than or equal tox. The implementation may only be called forx > 0. Example:floor_pow2 17 = 16
val ceil_log2 : t -> intceil_log2 xreturns the ceiling of log-base-2 ofx, and raises ifx <= 0.
val floor_log2 : t -> intfloor_log2 xreturns the floor of log-base-2 ofx, and raises ifx <= 0.
val is_pow2 : t -> boolis_pow2 xreturns true iffxis a power of 2.is_pow2raises ifx <= 0.
val clz : t -> intReturns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits.The results are unspecified for
t = 0.
val ctz : t -> intReturns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits.The results are unspecified for
t = 0.
module O : sig ... endA sub-module designed to be opened to make working with ints more convenient.
Conversion functions
val of_int : int -> tval to_int : t -> int optionval of_int32 : int32 -> tval to_int32 : t -> int32 optionval of_nativeint : nativeint -> tval to_nativeint : t -> nativeint optionval of_int64 : t -> t
Truncating conversions
Low-level float conversions
Byte swap operations
Extensions
include Int_intf.Extension with type t := t and type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if
texposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the varianttafterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.t
include Typerep_lib.Typerepable.S with type t := t
val typerep_of_t : t Typerep_lib.Std_internal.Typerep.tval typename_of_t : t Typerep_lib.Typename.t
include Int_intf.Hexable with type t := t
module Hex : sig ... endinclude Identifiable.S with type comparator_witness := comparator_witness and type t := t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if
texposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the varianttafterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_value
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
include Identifiable.S_common with type t := t
val compare : t -> t -> Base.Int.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
include Base.Stringable.S with type t := t
include Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Comparable.S_binable with type comparator_witness := comparator_witness and type t := t
include Base.Comparable.S with type comparator_witness := comparator_witness and type t := t
val ascending : t -> t -> intascendingis identical tocompare.descending x y = ascending y x. These are intended to be mnemonic when used likeList.sort ~compare:ascendingandList.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> intval between : t -> low:t -> high:t -> boolbetween t ~low ~highmeanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> tclamp_exn t ~min ~maxreturnst', the closest value totsuch thatbetween t' ~low:min ~high:maxis true.Raises if
not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type comparator_witness := comparator_witness and type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
module Replace_polymorphic_compare : sig ... endinclude Comparator.S with type comparator_witness := comparator_witness and type t := t
val comparator : (t, comparator_witness) Comparator.comparator
module Map : Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Hashable.S_binable with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_value
val hashable : t Hashtbl.Hashable.t
module Table : Hashtbl.S_binable with type key = tmodule Hash_set : Hash_set.S_binable with type elt = tmodule Hash_queue : Hash_queue.S with type key = tinclude Quickcheckable.S_int with type t := t
include Quickcheck_intf.S_range with type t := t
include Quickcheck_intf.S with type t := t
val quickcheck_generator : t Base_quickcheck.Generator.tval quickcheck_observer : t Base_quickcheck.Observer.tval quickcheck_shrinker : t Base_quickcheck.Shrinker.t
val gen_incl : t -> t -> t Base_quickcheck.Generator.tgen_incl lower_bound upper_boundproduces values betweenlower_boundandupper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises iflower_bound > upper_bound.
val gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_uniform_incl lower_bound upper_boundproduces a generator for values uniformly distributed betweenlower_boundandupper_bound, inclusive. Raises iflower_bound > upper_bound.
val gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_uniform_incl lower_bound upper_boundproduces a generator for values betweenlower_boundandupper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if(lower_bound < 0) || (lower_bound > upper_bound).
val gen_log_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_incl lower_bound upper_boundis likegen_log_uniform_incl, but weighted slightly more in favor of generatinglower_boundandupper_boundspecifically.