module Elt : sig ... end with type Elt.t = t and type Elt.comparator_witness = comparator_witnessmodule Tree : sig ... endinclude Set_intf.S_plain with module Elt := Elt and module Tree := Tree
type t = (Elt.t, Elt.comparator_witness) Base.Set.t
val compare : t -> t -> Base.Int.tval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
type named = (Elt.t, Elt.comparator_witness) Set_intf.Named.t
include Set_intf.Creators_and_accessors0 with type ('a, 'b) set := ('a, 'b) Base.Set.t with type t := t with type tree := Tree.t with type elt := Elt.t with type named := named with type comparator_witness := Elt.comparator_witness
include Set_intf.Accessors0 with type comparator_witness := Elt.comparator_witness and type named := named and type elt := Elt.t and type tree := Tree.t and type t := t
include Set_intf.Set.Accessors0 with type t := t and type tree := Tree.t and type elt := Elt.t and type named := named and type comparator_witness := Elt.comparator_witness
include Base.Container.S0 with type elt := Elt.t and type t := t
val length : t -> intval is_empty : t -> boolval iter : t -> f:(Elt.t -> unit) -> unititermust allow exceptions raised infto escape, terminating the iteration cleanly. The same holds for all functions below taking anf.
val fold : t -> init:'accum -> f:('accum -> Elt.t -> 'accum) -> 'accumfold t ~init ~freturnsf (... f (f (f init e1) e2) e3 ...) en, wheree1..enare the elements oft.
val fold_result : t -> init:'accum -> f:('accum -> Elt.t -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.tfold_result t ~init ~fis a short-circuiting version offoldthat runs in theResultmonad. Iffreturns anError _, that value is returned without any additional invocations off.
val fold_until : t -> init:'accum -> f:('accum -> Elt.t -> ('accum, 'final) Base__Container_intf.Export.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'finalfold_until t ~init ~f ~finishis a short-circuiting version offold. IffreturnsStop _the computation ceases and results in that value. IffreturnsContinue _, the fold will proceed. Iffnever returnsStop _, the final result is computed byfinish.Example:
type maybe_negative = | Found_negative of int | All_nonnegative of { sum : int } (** [first_neg_or_sum list] returns the first negative number in [list], if any, otherwise returns the sum of the list. *) let first_neg_or_sum = List.fold_until ~init:0 ~f:(fun sum x -> if x < 0 then Stop (Found_negative x) else Continue (sum + x)) ~finish:(fun sum -> All_nonnegative { sum }) ;; let x = first_neg_or_sum [1; 2; 3; 4; 5] val x : maybe_negative = All_nonnegative {sum = 15} let y = first_neg_or_sum [1; 2; -3; 4; 5] val y : maybe_negative = Found_negative -3
val exists : t -> f:(Elt.t -> bool) -> boolReturns
trueif and only if there exists an element for which the provided function evaluates totrue. This is a short-circuiting operation.
val for_all : t -> f:(Elt.t -> bool) -> boolReturns
trueif and only if the provided function evaluates totruefor all elements. This is a short-circuiting operation.
val count : t -> f:(Elt.t -> bool) -> intReturns the number of elements for which the provided function evaluates to true.
val sum : (module Base__Container_intf.Summable with type t = 'sum) -> t -> f:(Elt.t -> 'sum) -> 'sumReturns the sum of
f ifor alliin the container.
val find : t -> f:(Elt.t -> bool) -> Elt.t optionReturns as an
optionthe first element for whichfevaluates to true.
val find_map : t -> f:(Elt.t -> 'a option) -> 'a optionReturns the first evaluation of
fthat returnsSome, and returnsNoneif there is no such element.
val to_list : t -> Elt.t listval to_array : t -> Elt.t arrayval min_elt : t -> compare:(Elt.t -> Elt.t -> int) -> Elt.t optionReturns a min (resp. max) element from the collection using the provided
comparefunction. In case of a tie, the first element encountered while traversing the collection is returned. The implementation usesfoldso it has the same complexity asfold. ReturnsNoneiff the collection is empty.
val invariants : t -> boolval mem : t -> Elt.t -> boolval add : t -> Elt.t -> tval remove : t -> Elt.t -> tval union : t -> t -> tval inter : t -> t -> tval diff : t -> t -> tval symmetric_diff : t -> t -> (Elt.t, Elt.t) Base.Either.t Base.Sequence.tval compare_direct : t -> t -> intval equal : t -> t -> boolval is_subset : t -> of_:t -> boolval are_disjoint : t -> t -> bool
module Named : sig ... endval fold_until : t -> init:'b -> f:('b -> Elt.t -> ('b, 'final) Base__Set_intf.Continue_or_stop.t) -> finish:('b -> 'final) -> 'finalval fold_right : t -> init:'b -> f:(Elt.t -> 'b -> 'b) -> 'bval iter2 : t -> t -> f:([ `Left of Elt.t | `Right of Elt.t | `Both of Elt.t * Elt.t ] -> unit) -> unitval filter : t -> f:(Elt.t -> bool) -> tval partition_tf : t -> f:(Elt.t -> bool) -> t * tval elements : t -> Elt.t listval min_elt : t -> Elt.t optionval min_elt_exn : t -> Elt.tval max_elt : t -> Elt.t optionval max_elt_exn : t -> Elt.tval choose : t -> Elt.t optionval choose_exn : t -> Elt.tval split : t -> Elt.t -> t * Elt.t option * tval group_by : t -> equiv:(Elt.t -> Elt.t -> bool) -> t listval find_exn : t -> f:(Elt.t -> bool) -> Elt.tval nth : t -> int -> Elt.t optionval remove_index : t -> int -> tval to_tree : t -> Tree.tval to_sequence : ?order:[ `Increasing | `Decreasing ] -> ?greater_or_equal_to:Elt.t -> ?less_or_equal_to:Elt.t -> t -> Elt.t Base.Sequence.tval binary_search : t -> compare:(Elt.t -> 'key -> int) -> [ `Last_strictly_less_than | `Last_less_than_or_equal_to | `Last_equal_to | `First_equal_to | `First_greater_than_or_equal_to | `First_strictly_greater_than ] -> 'key -> Elt.t optionval binary_search_segmented : t -> segment_of:(Elt.t -> [ `Left | `Right ]) -> [ `Last_on_left | `First_on_right ] -> Elt.t optionval merge_to_sequence : ?order:[ `Increasing | `Decreasing ] -> ?greater_or_equal_to:Elt.t -> ?less_or_equal_to:Elt.t -> t -> t -> (Elt.t, Elt.t) Base.Sequence.Merge_with_duplicates_element.t Base.Sequence.t
val to_map : t -> f:(Elt.t -> 'data) -> (Elt.t, 'data, Elt.comparator_witness) Base.Map.tval quickcheck_observer : Elt.t Quickcheck.Observer.t -> t Quickcheck.Observer.tval quickcheck_shrinker : Elt.t Quickcheck.Shrinker.t -> t Quickcheck.Shrinker.t
include Set_intf.Creators0 with type t := t with type tree := Tree.t with type elt := Elt.t with type ('a, 'b) set := ('a, 'b) Base.Set.t and type comparator_witness := Elt.comparator_witness
include Set_intf.Set.Creators0 with type comparator_witness := Elt.comparator_witness and type ('a, 'b) set := ('a, 'b) Base.Set.t and type elt := Elt.t and type tree := Tree.t and type t := t
val empty : tval singleton : Elt.t -> tval union_list : t list -> tval of_list : Elt.t list -> tval of_array : Elt.t array -> tval of_sorted_array : Elt.t array -> t Base.Or_error.tval of_sorted_array_unchecked : Elt.t array -> tval of_increasing_iterator_unchecked : len:int -> f:(int -> Elt.t) -> tval stable_dedup_list : Elt.t list -> Elt.t listval map : ('a, 'b) Base.Set.t -> f:('a -> Elt.t) -> tval filter_map : ('a, 'b) Base.Set.t -> f:('a -> Elt.t option) -> tval of_tree : Tree.t -> t
val of_hash_set : Elt.t Hash_set.t -> tval of_hashtbl_keys : (Elt.t, _) Hashtbl.t -> tval of_map_keys : (Elt.t, _, Elt.comparator_witness) Base.Map.t -> tval quickcheck_generator : Elt.t Quickcheck.Generator.t -> t Quickcheck.Generator.t
module Provide_of_sexp : functor (Elt : sig ... end with type Provide_of_sexp.t := Elt.t) -> sig ... end with type Provide_of_sexp.t := tmodule Provide_bin_io : functor (Elt : sig ... end with type Provide_bin_io.t := Elt.t) -> Set_intf.Binable.S with type t := tmodule Provide_hash : functor (Elt : Base.Hasher.S with type t := Elt.t) -> sig ... end with type Provide_hash.t := tinclude Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t