Usage
Blang sexp syntax
type 'a t = private| True| False| And of 'a t * 'a t| Or of 'a t * 'a t| Not of 'a t| If of 'a t * 'a t * 'a t| Base of 'aNote that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for
'amust not look anything like blang sexps. Otherwiset_of_sexpwill fail. The directly inferred sexps are available viaRaw.sexp_of_t.
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writerval bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.readerval bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
val compare : ('a -> 'a -> Base.Int.t) -> 'a t -> 'a t -> Base.Int.tval hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a tval sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t
module Raw : sig ... endRawprovides the automatically derivedsexp_of_t, useful in debugging the actual structure of the blang.
Smart constructors that simplify away constants whenever possible
module type Constructors = sig ... endinclude Constructors
val base : 'a -> 'a tval true_ : _ tval false_ : _ tval constant : Base.Bool.t -> _ tfunction true -> true_ | false -> false_
val not_ : 'a t -> 'a tval and_ : 'a t Base.List.t -> 'a tn-ary
And
val or_ : 'a t Base.List.t -> 'a tn-ary
Or
module O : sig ... endval constant_value : 'a t -> Base.Bool.t Base.Option.tconstant_value t = Some bifft = constant b
val gather_conjuncts : 'a t -> 'a t Base.List.tgather_conjuncts tgathers up all toplevel conjuncts int. For example,gather_conjuncts (and_ ts) = tsgather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2gather_conjuncts True = []gather_conjuncts t = [t]whentmatches neitherAnd (_, _)norTrue
val gather_disjuncts : 'a t -> 'a t Base.List.tgather_disjuncts tgathers up all toplevel disjuncts int. For example,gather_disjuncts (or_ ts) = tsgather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2gather_disjuncts False = []gather_disjuncts t = [t]whentmatches neitherOr (_, _)norFalse
include Container.S1 with type 'a t := 'a t
val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> boolChecks whether the provided element is there, using
equal.
val length : 'a t -> intval is_empty : 'a t -> boolval iter : 'a t -> f:('a -> unit) -> unitval fold : 'a t -> init:'accum -> f:('accum -> 'a -> 'accum) -> 'accumfold t ~init ~freturnsf (... f (f (f init e1) e2) e3 ...) en, wheree1..enare the elements oft
val fold_result : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.tfold_result t ~init ~fis a short-circuiting version offoldthat runs in theResultmonad. Iffreturns anError _, that value is returned without any additional invocations off.
val fold_until : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'final) Base__Container_intf.Export.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'finalfold_until t ~init ~f ~finishis a short-circuiting version offold. IffreturnsStop _the computation ceases and results in that value. IffreturnsContinue _, the fold will proceed. Iffnever returnsStop _, the final result is computed byfinish.Example:
type maybe_negative = | Found_negative of int | All_nonnegative of { sum : int } (** [first_neg_or_sum list] returns the first negative number in [list], if any, otherwise returns the sum of the list. *) let first_neg_or_sum = List.fold_until ~init:0 ~f:(fun sum x -> if x < 0 then Stop (Found_negative x) else Continue (sum + x)) ~finish:(fun sum -> All_nonnegative { sum }) ;; let x = first_neg_or_sum [1; 2; 3; 4; 5] val x : maybe_negative = All_nonnegative {sum = 15} let y = first_neg_or_sum [1; 2; -3; 4; 5] val y : maybe_negative = Found_negative -3
val exists : 'a t -> f:('a -> bool) -> boolReturns
trueif and only if there exists an element for which the provided function evaluates totrue. This is a short-circuiting operation.
val for_all : 'a t -> f:('a -> bool) -> boolReturns
trueif and only if the provided function evaluates totruefor all elements. This is a short-circuiting operation.
val count : 'a t -> f:('a -> bool) -> intReturns the number of elements for which the provided function evaluates to true.
val sum : (module Base__Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sumReturns the sum of
f ifor alliin the container.
val find : 'a t -> f:('a -> bool) -> 'a optionReturns as an
optionthe first element for whichfevaluates to true.
val find_map : 'a t -> f:('a -> 'b option) -> 'b optionReturns the first evaluation of
fthat returnsSome, and returnsNoneif there is no such element.
val to_list : 'a t -> 'a listval to_array : 'a t -> 'a arrayval min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a optionReturns a minimum (resp maximum) element from the collection using the provided
comparefunction, orNoneif the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation usesfoldso it has the same complexity asfold.
val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
include Quickcheckable.S1 with type 'a t := 'a t
val quickcheck_generator : 'a Base_quickcheck.Generator.t -> 'a t Base_quickcheck.Generator.tval quickcheck_observer : 'a Base_quickcheck.Observer.t -> 'a t Base_quickcheck.Observer.tval quickcheck_shrinker : 'a Base_quickcheck.Shrinker.t -> 'a t Base_quickcheck.Shrinker.t
Blang.t sports a substitution monad:
module Monad_infix : sig ... endval return : 'a -> 'a treturn vreturns the (trivial) computation that returns v.
module Let_syntax : sig ... endval values : 'a t -> 'a Base.List.tvalues tforms the list containing everyvfor whichBase vis a subexpression oft
val eval : 'a t -> ('a -> Base.Bool.t) -> Base.Bool.teval t fevaluates the propositiontrelative to an environmentfthat assigns truth values to base propositions.
val eval_set : universe:('elt, 'comparator) Set.t Lazy.t -> ('a -> ('elt, 'comparator) Set.t) -> 'a t -> ('elt, 'comparator) Set.teval_set ~universe set_of_base expressionreturns the subset of elementseinuniversethat satisfyeval expression (fun base -> Set.mem (set_of_base base) e).eval_setassumes, but does not verify, thatset_of_basealways returns a subset ofuniverse. If this doesn't hold, theneval_set's result may contain elements not inuniverse.And set1 set2represents the elements that are both inset1andset2, thus in the intersection of the two sets. Symmetrically,Or set1 set2represents the union ofset1andset2.
val specialize : 'a t -> ('a -> [ `Known of Base.Bool.t | `Unknown ]) -> 'a tspecialize t fpartially evaluatestaccording to a perhaps-incomplete assignmentfof the values of base propositions. The following laws (at least partially) characterize its behavior.specialize t (fun _ -> `Unknown) = t
specialize t (fun x -> `Known (f x)) = constant (eval t f)
List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
if List.for_all (values t) ~f:(fun x -> match g x with | `Known b -> b = f x | `Unknown -> true) then eval t f = eval (specialize t g) f
val invariant : 'a t -> Base.Unit.t
module Stable : sig ... end