include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.tinclude Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tval arg_type : t Core_kernel.Command.Arg_type.tof_string Generates a Cidr.t based on a string like "10.0.0.0/8". Addresses are not expanded, i.e. "10/8" is invalid.
include Core_kernel.Identifiable.S with type t := t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueinclude Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.tinclude Core_kernel.Identifiable.S_common with type t := t
val compare : t -> t -> Base.Int.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.tinclude Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unitinclude Core_kernel.Comparable.S_binable with type t := t
include Base.Comparable.S with type t := t
compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.tinclude Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparatorval validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.checkmodule Replace_polymorphic_compare : sig ... endinclude Core_kernel.Comparator.S with type t := t with type comparator_witness := comparator_witness
val comparator : (t, comparator_witness) Core_kernel.Comparator.comparatormodule Map : Core_kernel.Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Core_kernel.Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Core_kernel.Hashable.S_binable with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval hashable : t Core_kernel.Hashtbl.Hashable.tmodule Table : Core_kernel.Hashtbl.S_binable with type key = tmodule Hash_set : Core_kernel.Hash_set.S_binable with type elt = tmodule Hash_queue : Core_kernel.Hash_queue.S with type key = tinclude Base.Invariant.S with type t := t
val invariant : t -> unitval create : base_address:Inet_addr.t -> bits:int -> tval base_address : t -> Inet_addr.tAccessors.
base_address 192.168.0.0/24 = 192.168.0.0bits 192.168.0.0/24 = 24.
val bits : t -> intval all_matching_addresses : t -> Inet_addr.t Core_kernel.Sequence.tGenerate a sequence of all addresses in the block.
val broadcast_address : t -> Inet_addr.tCompute the broadcast address associated with the subnet (the top IP in the range). NB: The computed broadcast address may not be useful for small (/31 and /32) ranges.
val multicast : tIPv4 multicast address can be represented by the CIDR prefix 224.0.0.0/4, (i.e. addresses from 224.0.0.0 to 239.255.255.255, inclusive)
val does_match : t -> Inet_addr.t -> boolIs the given address inside the given Cidr.t? Note that the broadcast and network addresses are considered valid so does_match 10.0.0.0/8 10.0.0.0 is true.
val netmask_of_bits : t -> Inet_addr.tReturn the netmask corresponding to the number of network bits in the CIDR. For example, the netmask for a CIDR with 24 network bits (e.g. 1.2.3.0/24) is 255.255.255.0.
is_subset t1 ~of:t2 is true iff the set of IP addresses specified by t1 is a subset of those specified by t2.
If is_subset t1 ~of_:t2, then does_match t1 x implies does_match t2 x.
If does_match t1 x and does_match t2 x, then either is_subset t1 ~of_:t2 or is_subset t2 ~of_:t1 (or both).
module Stable : sig ... end