Module Caml.Bigarray
Element kinds
type float32_elt=|Float32_elttype float64_elt=|Float64_elttype int8_signed_elt=|Int8_signed_elttype int8_unsigned_elt=|Int8_unsigned_elttype int16_signed_elt=|Int16_signed_elttype int16_unsigned_elt=|Int16_unsigned_elttype int32_elt=|Int32_elttype int64_elt=|Int64_elttype int_elt=|Int_elttype nativeint_elt=|Nativeint_elttype complex32_elt=|Complex32_elttype complex64_elt=|Complex64_elttype ('a, 'b) kind=|Float32 : (float, float32_elt) kind|Float64 : (float, float64_elt) kind|Int8_signed : (int, int8_signed_elt) kind|Int8_unsigned : (int, int8_unsigned_elt) kind|Int16_signed : (int, int16_signed_elt) kind|Int16_unsigned : (int, int16_unsigned_elt) kind|Int32 : (int32, int32_elt) kind|Int64 : (int64, int64_elt) kind|Int : (int, int_elt) kind|Nativeint : (nativeint, nativeint_elt) kind|Complex32 : (Stdlib.Complex.t, complex32_elt) kind|Complex64 : (Stdlib.Complex.t, complex64_elt) kind|Char : (char, int8_unsigned_elt) kindTo each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind
float32_eltcontains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml typefloat, which is 64-bit double precision floats.The GADT type
('a, 'b) kindcaptures this association of an OCaml type'afor values read or written in the Bigarray, and of an element kind'bwhich represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons.Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function | Float32 -> 0.0 | Complex32 -> Complex.zero | Float64 -> 0.0 | Complex64 -> Complex.zero | Int8_signed -> 0 | Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L | Int -> 0 | Nativeint -> 0n | Char -> '\000'
val float32 : (float, float32_elt) kindSee
Bigarray.char.
val float64 : (float, float64_elt) kindSee
Bigarray.char.
val complex32 : (Stdlib.Complex.t, complex32_elt) kindSee
Bigarray.char.
val complex64 : (Stdlib.Complex.t, complex64_elt) kindSee
Bigarray.char.
val int8_signed : (int, int8_signed_elt) kindSee
Bigarray.char.
val int8_unsigned : (int, int8_unsigned_elt) kindSee
Bigarray.char.
val int16_signed : (int, int16_signed_elt) kindSee
Bigarray.char.
val int16_unsigned : (int, int16_unsigned_elt) kindSee
Bigarray.char.
val int : (int, int_elt) kindSee
Bigarray.char.
val int32 : (int32, int32_elt) kindSee
Bigarray.char.
val int64 : (int64, int64_elt) kindSee
Bigarray.char.
val nativeint : (nativeint, nativeint_elt) kindSee
Bigarray.char.
val char : (char, int8_unsigned_elt) kindAs shown by the types of the values above, Bigarrays of kind
float32_eltandfloat64_eltare accessed using the OCaml typefloat. Bigarrays of complex kindscomplex32_elt,complex64_eltare accessed with the OCaml typeComplex.t. Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements:intfor 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays;int32for 32-bit integer Bigarrays;int64for 64-bit integer Bigarrays; andnativeintfor platform-native integer Bigarrays. Finally, Bigarrays of kindint8_unsigned_eltcan also be accessed as arrays of characters instead of arrays of small integers, by using the kind valuecharinstead ofint8_unsigned.
val kind_size_in_bytes : ('a, 'b) kind -> intkind_size_in_bytes kis the number of bytes used to store an element of typek.- since
- 4.03.0
Array layouts
type fortran_layout=|Fortran_layout_typTo facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at
(x,y)and(x, y+1)are adjacent in memory.In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at
(x,y)and(x+1, y)are adjacent in memory.Each layout style is identified at the type level by the phantom types
Bigarray.c_layoutandBigarray.fortran_layoutrespectively.
Supported layouts
The GADT type 'a layout represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.
type 'a layout=|C_layout : c_layout layout|Fortran_layout : fortran_layout layout
val c_layout : c_layout layoutval fortran_layout : fortran_layout layout
Generic arrays (of arbitrarily many dimensions)
module Genarray : sig ... endZero-dimensional arrays
module Array0 : sig ... endZero-dimensional arrays. The
Array0structure provides operations similar to those ofBigarray.Genarray, but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.
One-dimensional arrays
module Array1 : sig ... endOne-dimensional arrays. The
Array1structure provides operations similar to those ofBigarray.Genarray, but specialized to the case of one-dimensional arrays. (TheArray2andArray3structures below provide operations specialized for two- and three-dimensional arrays.) Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.
Two-dimensional arrays
module Array2 : sig ... endTwo-dimensional arrays. The
Array2structure provides operations similar to those ofBigarray.Genarray, but specialized to the case of two-dimensional arrays.
Three-dimensional arrays
module Array3 : sig ... endThree-dimensional arrays. The
Array3structure provides operations similar to those ofBigarray.Genarray, but specialized to the case of three-dimensional arrays.
Coercions between generic Bigarrays and fixed-dimension Bigarrays
val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given zero-dimensional Bigarray.
- since
- 4.05.0
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given one-dimensional Bigarray.
val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given two-dimensional Bigarray.
val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given three-dimensional Bigarray.
val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.tReturn the zero-dimensional Bigarray corresponding to the given generic Bigarray. Raise
Invalid_argumentif the generic Bigarray does not have exactly zero dimension.- since
- 4.05.0
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.tReturn the one-dimensional Bigarray corresponding to the given generic Bigarray. Raise
Invalid_argumentif the generic Bigarray does not have exactly one dimension.
val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.tReturn the two-dimensional Bigarray corresponding to the given generic Bigarray. Raise
Invalid_argumentif the generic Bigarray does not have exactly two dimensions.
val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.tReturn the three-dimensional Bigarray corresponding to the given generic Bigarray. Raise
Invalid_argumentif the generic Bigarray does not have exactly three dimensions.
Re-shaping Bigarrays
val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.treshape b [|d1;...;dN|]converts the Bigarraybto aN-dimensional array of dimensionsd1...dN. The returned array and the original arraybshare their data and have the same layout. For instance, assuming thatbis a one-dimensional array of dimension 12,reshape b [|3;4|]returns a two-dimensional arrayb'of dimensions 3 and 4. Ifbhas C layout, the element(x,y)ofb'corresponds to the elementx * 3 + yofb. Ifbhas Fortran layout, the element(x,y)ofb'corresponds to the elementx + (y - 1) * 4ofb. The returned Bigarray must have exactly the same number of elements as the original Bigarrayb. That is, the product of the dimensions ofbmust be equal toi1 * ... * iN. Otherwise,Invalid_argumentis raised.
val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.tSpecialized version of
Bigarray.reshapefor reshaping to zero-dimensional arrays.- since
- 4.05.0
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.tSpecialized version of
Bigarray.reshapefor reshaping to one-dimensional arrays.
val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.tSpecialized version of
Bigarray.reshapefor reshaping to two-dimensional arrays.
val reshape_3 : ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.tSpecialized version of
Bigarray.reshapefor reshaping to three-dimensional arrays.