{-# OPTIONS --without-K #-}
module agda.exp-path where
open import agda.prelude
open import agda.postulates
----------------------------------------------------------------------
-- The path functor given by exponentiating by 𝕀
----------------------------------------------------------------------
℘ :
{l : Level}
(Γ : Set l)
→ ---------
Set l
℘ Γ = 𝕀 → Γ
℘` :
{l m : Level}
{Γ : Set l}
{Δ : Set m}
(γ : Δ → Γ)
→ -----------
℘ Δ → ℘ Γ
℘` γ p i = γ (p i)
℘`comp :
{l m n : Level}
{Γ : Set l}
{Δ : Set m}
{Θ : Set n}
(γ : Δ → Γ)
(σ : Θ → Δ)
(p : ℘ Θ)
→ -----------
℘` γ (℘` σ p) ≡ ℘` (γ ∘ σ) p
℘`comp _ _ _ = refl