Theory Boolean_Algebras

(*  Title:      HOL/Boolean_Algebras.thy
    Author:     Brian Huffman
    Author:     Florian Haftmann
*)

section ‹Boolean Algebras›

theory Boolean_Algebras
  imports Lattices
begin

subsection ‹Abstract boolean algebra›

locale abstract_boolean_algebra = conj: abel_semigroup () + disj: abel_semigroup ()
  for conj :: 'a  'a  'a  (infixr  70)
    and disj :: 'a  'a  'a  (infixr  65) +
  fixes compl :: 'a  'a  (- _› [81] 80)
    and zero :: 'a  (0)
    and one  :: 'a  (1)
  assumes conj_disj_distrib: x  (y  z) = (x  y)  (x  z)
    and disj_conj_distrib: x  (y  z) = (x  y)  (x  z)
    and conj_one_right: x  1 = x
    and disj_zero_right: x  0 = x
    and conj_cancel_right [simp]: x  - x = 0
    and disj_cancel_right [simp]: x  - x = 1
begin

sublocale conj: semilattice_neutr () 1
proof
  show "x  1 = x" for x 
    by (fact conj_one_right)
  show "x  x = x" for x
  proof -
    have "x  x = (x  x)  0"
      by (simp add: disj_zero_right)
    also have " = (x  x)  (x  - x)"
      by simp
    also have " = x  (x  - x)"
      by (simp only: conj_disj_distrib)
    also have " = x  1"
      by simp
    also have " = x"
      by (simp add: conj_one_right)
    finally show ?thesis .
  qed
qed

sublocale disj: semilattice_neutr () 0
proof
  show "x  0 = x" for x
    by (fact disj_zero_right)
  show "x  x = x" for x
  proof -
    have "x  x = (x  x)  1"
      by simp
    also have " = (x  x)  (x  - x)"
      by simp
    also have " = x  (x  - x)"
      by (simp only: disj_conj_distrib)
    also have " = x  0"
      by simp
    also have " = x"
      by (simp add: disj_zero_right)
    finally show ?thesis .
  qed
qed


subsubsection ‹Complement›

lemma complement_unique:
  assumes 1: "a  x = 0"
  assumes 2: "a  x = 1"
  assumes 3: "a  y = 0"
  assumes 4: "a  y = 1"
  shows "x = y"
proof -
  from 1 3 have "(a  x)  (x  y) = (a  y)  (x  y)"
    by simp
  then have "(x  a)  (x  y) = (y  a)  (y  x)"
    by (simp add: ac_simps)
  then have "x  (a  y) = y  (a  x)"
    by (simp add: conj_disj_distrib)
  with 2 4 have "x  1 = y  1"
    by simp
  then show "x = y"
    by simp
qed

lemma compl_unique: "x  y = 0  x  y = 1  - x = y"
  by (rule complement_unique [OF conj_cancel_right disj_cancel_right])

lemma double_compl [simp]: "- (- x) = x"
proof (rule compl_unique)
  show "- x  x = 0"
    by (simp only: conj_cancel_right conj.commute)
  show "- x  x = 1"
    by (simp only: disj_cancel_right disj.commute)
qed

lemma compl_eq_compl_iff [simp]: 
  - x = - y  x = y  (is ?P  ?Q)
proof
  assume ?Q
  then show ?P by simp
next
  assume ?P
  then have - (- x) = - (- y)
    by simp
  then show ?Q
    by simp
qed


subsubsection ‹Conjunction›

lemma conj_zero_right [simp]: "x  0 = 0"
  using conj.left_idem conj_cancel_right by fastforce

lemma compl_one [simp]: "- 1 = 0"
  by (rule compl_unique [OF conj_zero_right disj_zero_right])

lemma conj_zero_left [simp]: "0  x = 0"
  by (subst conj.commute) (rule conj_zero_right)

lemma conj_cancel_left [simp]: "- x  x = 0"
  by (subst conj.commute) (rule conj_cancel_right)

lemma conj_disj_distrib2: "(y  z)  x = (y  x)  (z  x)"
  by (simp only: conj.commute conj_disj_distrib)

lemmas conj_disj_distribs = conj_disj_distrib conj_disj_distrib2


subsubsection ‹Disjunction›

context
begin

interpretation dual: abstract_boolean_algebra () () compl 1 0
  apply standard
       apply (rule disj_conj_distrib)
      apply (rule conj_disj_distrib)
     apply simp_all
  done

lemma disj_one_right [simp]: "x  1 = 1"
  by (fact dual.conj_zero_right)

lemma compl_zero [simp]: "- 0 = 1"
  by (fact dual.compl_one)

lemma disj_one_left [simp]: "1  x = 1"
  by (fact dual.conj_zero_left)

lemma disj_cancel_left [simp]: "- x  x = 1"
  by (fact dual.conj_cancel_left)

lemma disj_conj_distrib2: "(y  z)  x = (y  x)  (z  x)"
  by (fact dual.conj_disj_distrib2)

lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2

end


subsubsection ‹De Morgan's Laws›

lemma de_Morgan_conj [simp]: "- (x  y) = - x  - y"
proof (rule compl_unique)
  have "(x  y)  (- x  - y) = ((x  y)  - x)  ((x  y)  - y)"
    by (rule conj_disj_distrib)
  also have " = (y  (x  - x))  (x  (y  - y))"
    by (simp only: ac_simps)
  finally show "(x  y)  (- x  - y) = 0"
    by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
next
  have "(x  y)  (- x  - y) = (x  (- x  - y))  (y  (- x  - y))"
    by (rule disj_conj_distrib2)
  also have " = (- y  (x  - x))  (- x  (y  - y))"
    by (simp only: ac_simps)
  finally show "(x  y)  (- x  - y) = 1"
    by (simp only: disj_cancel_right disj_one_right conj_one_right)
qed

context
begin

interpretation dual: abstract_boolean_algebra () () compl 1 0
  apply standard
       apply (rule disj_conj_distrib)
      apply (rule conj_disj_distrib)
     apply simp_all
  done

lemma de_Morgan_disj [simp]: "- (x  y) = - x  - y"
  by (fact dual.de_Morgan_conj)

end

end


subsection ‹Symmetric Difference›

locale abstract_boolean_algebra_sym_diff = abstract_boolean_algebra +
  fixes xor :: 'a  'a  'a  (infixr  65)
  assumes xor_def : x  y = (x  - y)  (- x  y)
begin

sublocale xor: comm_monoid xor 0
proof
  fix x y z :: 'a
  let ?t = "(x  y  z)  (x  - y  - z)  (- x  y  - z)  (- x  - y  z)"
  have "?t  (z  x  - x)  (z  y  - y) = ?t  (x  y  - y)  (x  z  - z)"
    by (simp only: conj_cancel_right conj_zero_right)
  then show "(x  y)  z = x  (y  z)"
    by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
      (simp only: conj_disj_distribs conj_ac ac_simps)
  show "x  y = y  x"
    by (simp only: xor_def ac_simps)
  show "x  0 = x"
    by (simp add: xor_def)
qed

lemma xor_def2:
  x  y = (x  y)  (- x  - y)
proof -
  note xor_def [of x y]
  also have x  - y  - x  y = ((x  - x)  (- y  - x))  (x  y)  (- y  y)
    by (simp add: ac_simps disj_conj_distribs)
  also have  = (x  y)  (- x  - y)
    by (simp add: ac_simps)
  finally show ?thesis .
qed

lemma xor_one_right [simp]: "x  1 = - x"
  by (simp only: xor_def compl_one conj_zero_right conj_one_right disj.left_neutral)

lemma xor_one_left [simp]: "1  x = - x"
  using xor_one_right [of x] by (simp add: ac_simps)

lemma xor_self [simp]: "x  x = 0"
  by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)

lemma xor_left_self [simp]: "x  (x  y) = y"
  by (simp only: xor.assoc [symmetric] xor_self xor.left_neutral)

lemma xor_compl_left [simp]: "- x  y = - (x  y)"
  by (simp add: ac_simps flip: xor_one_left)

lemma xor_compl_right [simp]: "x  - y = - (x  y)"
  using xor.commute xor_compl_left by auto

lemma xor_cancel_right [simp]: "x  - x = 1"
  by (simp only: xor_compl_right xor_self compl_zero)

lemma xor_cancel_left [simp]: "- x  x = 1"
  by (simp only: xor_compl_left xor_self compl_zero)

lemma conj_xor_distrib: "x  (y  z) = (x  y)  (x  z)"
proof -
  have *: "(x  y  - z)  (x  - y  z) =
        (y  x  - x)  (z  x  - x)  (x  y  - z)  (x  - y  z)"
    by (simp only: conj_cancel_right conj_zero_right disj.left_neutral)
  then show "x  (y  z) = (x  y)  (x  z)"
    by (simp (no_asm_use) only:
        xor_def de_Morgan_disj de_Morgan_conj double_compl
        conj_disj_distribs ac_simps)
qed

lemma conj_xor_distrib2: "(y  z)  x = (y  x)  (z  x)"
  by (simp add: conj.commute conj_xor_distrib)

lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2

end


subsection ‹Type classes›

class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus +
  assumes inf_compl_bot: x  - x = 
    and sup_compl_top: x  - x = 
  assumes diff_eq: x - y = x  - y
begin

sublocale boolean_algebra: abstract_boolean_algebra (⊓) (⊔) uminus  
  apply standard
       apply (rule inf_sup_distrib1)
      apply (rule sup_inf_distrib1)
     apply (simp_all add: ac_simps inf_compl_bot sup_compl_top)
  done

lemma compl_inf_bot: "- x  x = "
  by (fact boolean_algebra.conj_cancel_left)

lemma compl_sup_top: "- x  x = "
  by (fact boolean_algebra.disj_cancel_left)

lemma compl_unique:
  assumes "x  y = "
    and "x  y = "
  shows "- x = y"
  using assms by (rule boolean_algebra.compl_unique)

lemma double_compl: "- (- x) = x"
  by (fact boolean_algebra.double_compl)

lemma compl_eq_compl_iff: "- x = - y  x = y"
  by (fact boolean_algebra.compl_eq_compl_iff)

lemma compl_bot_eq: "-  = "
  by (fact boolean_algebra.compl_zero)

lemma compl_top_eq: "-  = "
  by (fact boolean_algebra.compl_one)

lemma compl_inf: "- (x  y) = - x  - y"
  by (fact boolean_algebra.de_Morgan_conj)

lemma compl_sup: "- (x  y) = - x  - y"
  by (fact boolean_algebra.de_Morgan_disj)

lemma compl_mono:
  assumes "x  y"
  shows "- y  - x"
proof -
  from assms have "x  y = y" by (simp only: le_iff_sup)
  then have "- (x  y) = - y" by simp
  then have "- x  - y = - y" by simp
  then have "- y  - x = - y" by (simp only: inf_commute)
  then show ?thesis by (simp only: le_iff_inf)
qed

lemma compl_le_compl_iff [simp]: "- x  - y  y  x"
  by (auto dest: compl_mono)

lemma compl_le_swap1:
  assumes "y  - x"
  shows "x  -y"
proof -
  from assms have "- (- x)  - y" by (simp only: compl_le_compl_iff)
  then show ?thesis by simp
qed

lemma compl_le_swap2:
  assumes "- y  x"
  shows "- x  y"
proof -
  from assms have "- x  - (- y)" by (simp only: compl_le_compl_iff)
  then show ?thesis by simp
qed

lemma compl_less_compl_iff [simp]: "- x < - y  y < x"
  by (auto simp add: less_le)

lemma compl_less_swap1:
  assumes "y < - x"
  shows "x < - y"
proof -
  from assms have "- (- x) < - y" by (simp only: compl_less_compl_iff)
  then show ?thesis by simp
qed

lemma compl_less_swap2:
  assumes "- y < x"
  shows "- x < y"
proof -
  from assms have "- x < - (- y)"
    by (simp only: compl_less_compl_iff)
  then show ?thesis by simp
qed

lemma sup_cancel_left1: x  a  (- x  b) = 
  by (simp add: ac_simps)

lemma sup_cancel_left2: - x  a  (x  b) = 
  by (simp add: ac_simps)

lemma inf_cancel_left1: x  a  (- x  b) = 
  by (simp add: ac_simps)

lemma inf_cancel_left2: - x  a  (x  b) = 
  by (simp add: ac_simps)

lemma sup_compl_top_left1 [simp]: - x  (x  y) = 
  by (simp add: sup_assoc [symmetric])

lemma sup_compl_top_left2 [simp]: x  (- x  y) = 
  using sup_compl_top_left1 [of "- x" y] by simp

lemma inf_compl_bot_left1 [simp]: - x  (x  y) = 
  by (simp add: inf_assoc [symmetric])

lemma inf_compl_bot_left2 [simp]: x  (- x  y) = 
  using inf_compl_bot_left1 [of "- x" y] by simp

lemma inf_compl_bot_right [simp]: x  (y  - x) = 
  by (subst inf_left_commute) simp

end


subsection ‹Lattice on typbool

instantiation bool :: boolean_algebra
begin

definition bool_Compl_def [simp]: "uminus = Not"

definition bool_diff_def [simp]: "A - B  A  ¬ B"

definition [simp]: "P  Q  P  Q"

definition [simp]: "P  Q  P  Q"

instance by standard auto

end

lemma sup_boolI1: "P  P  Q"
  by simp

lemma sup_boolI2: "Q  P  Q"
  by simp

lemma sup_boolE: "P  Q  (P  R)  (Q  R)  R"
  by auto

instance "fun" :: (type, boolean_algebra) boolean_algebra
  by standard (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+


subsection ‹Lattice on unary and binary predicates›

lemma inf1I: "A x  B x  (A  B) x"
  by (simp add: inf_fun_def)

lemma inf2I: "A x y  B x y  (A  B) x y"
  by (simp add: inf_fun_def)

lemma inf1E: "(A  B) x  (A x  B x  P)  P"
  by (simp add: inf_fun_def)

lemma inf2E: "(A  B) x y  (A x y  B x y  P)  P"
  by (simp add: inf_fun_def)

lemma inf1D1: "(A  B) x  A x"
  by (rule inf1E)

lemma inf2D1: "(A  B) x y  A x y"
  by (rule inf2E)

lemma inf1D2: "(A  B) x  B x"
  by (rule inf1E)

lemma inf2D2: "(A  B) x y  B x y"
  by (rule inf2E)

lemma sup1I1: "A x  (A  B) x"
  by (simp add: sup_fun_def)

lemma sup2I1: "A x y  (A  B) x y"
  by (simp add: sup_fun_def)

lemma sup1I2: "B x  (A  B) x"
  by (simp add: sup_fun_def)

lemma sup2I2: "B x y  (A  B) x y"
  by (simp add: sup_fun_def)

lemma sup1E: "(A  B) x  (A x  P)  (B x  P)  P"
  by (simp add: sup_fun_def) iprover

lemma sup2E: "(A  B) x y  (A x y  P)  (B x y  P)  P"
  by (simp add: sup_fun_def) iprover

text  Classical introduction rule: no commitment to A› vs B›.›

lemma sup1CI: "(¬ B x  A x)  (A  B) x"
  by (auto simp add: sup_fun_def)

lemma sup2CI: "(¬ B x y  A x y)  (A  B) x y"
  by (auto simp add: sup_fun_def)


subsection ‹Simproc setup›

locale boolean_algebra_cancel
begin

lemma sup1: "(A::'a::semilattice_sup)  sup k a  sup A b  sup k (sup a b)"
  by (simp only: ac_simps)

lemma sup2: "(B::'a::semilattice_sup)  sup k b  sup a B  sup k (sup a b)"
  by (simp only: ac_simps)

lemma sup0: "(a::'a::bounded_semilattice_sup_bot)  sup a bot"
  by simp

lemma inf1: "(A::'a::semilattice_inf)  inf k a  inf A b  inf k (inf a b)"
  by (simp only: ac_simps)

lemma inf2: "(B::'a::semilattice_inf)  inf k b  inf a B  inf k (inf a b)"
  by (simp only: ac_simps)

lemma inf0: "(a::'a::bounded_semilattice_inf_top)  inf a top"
  by simp

end

ML_file ‹Tools/boolean_algebra_cancel.ML›

simproc_setup boolean_algebra_cancel_sup ("sup a b::'a::boolean_algebra") =
  K (K (try Boolean_Algebra_Cancel.cancel_sup_conv))

simproc_setup boolean_algebra_cancel_inf ("inf a b::'a::boolean_algebra") =
  K (K (try Boolean_Algebra_Cancel.cancel_inf_conv))


context boolean_algebra
begin
    
lemma shunt1: "(x  y  z)  (x  -y  z)"
proof
  assume "x  y  z"
  hence  "-y  (x  y)  -y  z"
    using sup.mono by blast
  hence "-y  x  -y  z"
    by (simp add: sup_inf_distrib1)
  thus "x  -y  z"
    by simp
next
  assume "x  -y  z"
  hence "x  y  (-y  z)  y"
    using inf_mono by auto
  thus  "x  y  z"
    using inf.boundedE inf_sup_distrib2 by auto
qed

lemma shunt2: "(x  -y  z)  (x  y  z)"
  by (simp add: shunt1)

lemma inf_shunt: "(x  y = )  (x  - y)"
  by (simp add: order.eq_iff shunt1)
  
lemma sup_shunt: "(x  y = )  (- x  y)"
  using inf_shunt [of - x - y, symmetric] 
  by (simp flip: compl_sup compl_top_eq)

lemma diff_shunt_var: "(x - y = )  (x  y)"
  by (simp add: diff_eq inf_shunt)

lemma sup_neg_inf:
  p  q  r  p  -q  r  (is ?P  ?Q)
proof
  assume ?P
  then have p  - q  (q  r)  - q
    by (rule inf_mono) simp
  then show ?Q
    by (simp add: inf_sup_distrib2)
next
  assume ?Q
  then have p  - q  q  r  q
    by (rule sup_mono) simp
  then show ?P
    by (simp add: sup_inf_distrib ac_simps)
qed

end

end