Theory HOL-Library.Code_Target_Nat

(*  Title:      HOL/Library/Code_Target_Nat.thy
    Author:     Florian Haftmann, TU Muenchen

section ‹Implementation of natural numbers by target-language integers›

theory Code_Target_Nat
imports Code_Abstract_Nat

subsection ‹Implementation for typnat

includes natural.lifting integer.lifting

lift_definition Nat :: "integer  nat"
  is nat

lemma [code_post]:
  "Nat 0 = 0"
  "Nat 1 = 1"
  "Nat (numeral k) = numeral k"
  by (transfer, simp)+

lemma [code_abbrev]:
  "integer_of_nat = of_nat"
  by transfer rule

lemma [code_unfold]:
  "Int.nat (int_of_integer k) = nat_of_integer k"
  by transfer rule

lemma [code abstype]:
  "Code_Target_Nat.Nat (integer_of_nat n) = n"
  by transfer simp

lemma [code abstract]:
  "integer_of_nat (nat_of_integer k) = max 0 k"
  by transfer auto

lemma [code_abbrev]:
  "nat_of_integer (numeral k) = nat_of_num k"
  by transfer (simp add: nat_of_num_numeral)


qualified definition natural :: "num  nat"
  where [simp]: "natural = nat_of_num"

lemma [code_computation_unfold]:
  "numeral = natural"
  "nat_of_num = natural"
  by (simp_all add: nat_of_num_numeral)


lemma [code abstract]:
  "integer_of_nat (nat_of_num n) = integer_of_num n"
  by (simp add: nat_of_num_numeral integer_of_nat_numeral)

lemma [code abstract]:
  "integer_of_nat 0 = 0"
  by transfer simp

lemma [code abstract]:
  "integer_of_nat 1 = 1"
  by transfer simp

lemma [code]:
  "Suc n = n + 1"
  by simp

lemma [code abstract]:
  "integer_of_nat (m + n) = of_nat m + of_nat n"
  by transfer simp

lemma [code abstract]:
  "integer_of_nat (m - n) = max 0 (of_nat m - of_nat n)"
  by transfer simp

lemma [code abstract]:
  "integer_of_nat (m * n) = of_nat m * of_nat n"
  by transfer (simp add: of_nat_mult)

lemma [code abstract]:
  "integer_of_nat (m div n) = of_nat m div of_nat n"
  by transfer (simp add: zdiv_int)

lemma [code abstract]:
  "integer_of_nat (m mod n) = of_nat m mod of_nat n"
  by transfer (simp add: zmod_int)

  includes integer.lifting

lemma divmod_nat_code [code]: contributor ‹René Thiemann› contributor ‹Akihisa Yamada›
  "Euclidean_Rings.divmod_nat m n = (
     let k = integer_of_nat m; l = integer_of_nat n
     in map_prod nat_of_integer nat_of_integer
       (if k = 0 then (0, 0)
        else if l = 0 then (0, k) else
          Code_Numeral.divmod_abs k l))"
  by (simp add: prod_eq_iff Let_def Euclidean_Rings.divmod_nat_def; transfer)
    (simp add: nat_div_distrib nat_mod_distrib)


lemma [code]:
  "divmod m n = map_prod nat_of_integer nat_of_integer (divmod m n)"
  by (simp only: prod_eq_iff divmod_def map_prod_def case_prod_beta fst_conv snd_conv; transfer)
    (simp_all only: nat_div_distrib nat_mod_distrib
        zero_le_numeral nat_numeral)
lemma [code]:
  "HOL.equal m n = HOL.equal (of_nat m :: integer) (of_nat n)"
  by transfer (simp add: equal)

lemma [code]:
  "m  n  (of_nat m :: integer)  of_nat n"
  by simp

lemma [code]:
  "m < n  (of_nat m :: integer) < of_nat n"
  by simp

lemma num_of_nat_code [code]:
  "num_of_nat = num_of_integer  of_nat"
  by transfer (simp add: fun_eq_iff)


lemma (in semiring_1) of_nat_code_if:
  "of_nat n = (if n = 0 then 0
     else let
       (m, q) = Euclidean_Rings.divmod_nat n 2;
       m' = 2 * of_nat m
     in if q = 0 then m' else m' + 1)"
  by (cases n)
    (simp_all add: Let_def Euclidean_Rings.divmod_nat_def ac_simps
      flip: of_nat_numeral of_nat_mult minus_mod_eq_mult_div)

declare of_nat_code_if [code]

definition int_of_nat :: "nat  int" where
  [code_abbrev]: "int_of_nat = of_nat"

lemma [code]:
  "int_of_nat n = int_of_integer (of_nat n)"
  by (simp add: int_of_nat_def)

lemma [code abstract]:
  "integer_of_nat (nat k) = max 0 (integer_of_int k)"
  including integer.lifting by transfer auto

definition char_of_nat :: "nat  char"
  where [code_abbrev]: "char_of_nat = char_of"

definition nat_of_char :: "char  nat"
  where [code_abbrev]: "nat_of_char = of_char"

lemma [code]:
  "char_of_nat = char_of_integer  integer_of_nat"
  including integer.lifting unfolding char_of_integer_def char_of_nat_def
  by transfer (simp add: fun_eq_iff)

lemma [code abstract]:
  "integer_of_nat (nat_of_char c) = integer_of_char c"
  by (cases c) (simp add: nat_of_char_def integer_of_char_def integer_of_nat_eq_of_nat)

lemma term_of_nat_code [code]:
  ― ‹Use termCode_Numeral.nat_of_integer in term reconstruction
        instead of termCode_Target_Nat.Nat such that reconstructed
        terms can be fed back to the code generator›
  "term_of_class.term_of n =
     (Code_Evaluation.Const (STR ''Code_Numeral.nat_of_integer'')
        (typerep.Typerep (STR ''fun'')
           [typerep.Typerep (STR ''Code_Numeral.integer'') [],
         typerep.Typerep (STR ''Nat.nat'') []]))
     (term_of_class.term_of (integer_of_nat n))"
  by (simp add: term_of_anything)

lemma nat_of_integer_code_post [code_post]:
  "nat_of_integer 0 = 0"
  "nat_of_integer 1 = 1"
  "nat_of_integer (numeral k) = numeral k"
  including integer.lifting by (transfer, simp)+

  code_module Code_Target_Nat 
    (SML) Arith and (OCaml) Arith and (Haskell) Arith