# Theory HOL-Algebra.Group

(*  Title:      HOL/Algebra/Group.thy
Author:     Clemens Ballarin, started 4 February 2003

Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
*)

theory Group
imports Complete_Lattice
begin

section ‹Monoids and Groups›

subsection ‹Definitions›

text ‹
›

record 'a monoid =  "'a partial_object" +
mult    :: "['a, 'a]  'a" (infixl "ı" 70)
one     :: 'a ("𝟭ı")

definition
m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("invı _" [81] 80)
where "invGx = (THE y. y  carrier G  x Gy = 𝟭G y Gx = 𝟭G)"

definition
Units :: "_ => 'a set"
― ‹The set of invertible elements›
where "Units G = {y. y  carrier G  (x  carrier G. x Gy = 𝟭G y Gx = 𝟭G)}"

locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:
"x  carrier G; y  carrier G  x  y  carrier G"
and m_assoc:
"x  carrier G; y  carrier G; z  carrier G
(x  y)  z = x  (y  z)"
and one_closed [intro, simp]: "𝟭  carrier G"
and l_one [simp]: "x  carrier G  𝟭  x = x"
and r_one [simp]: "x  carrier G  x  𝟭 = x"

lemma monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
and one_closed: "𝟭  carrier G"
and m_assoc:
"!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
(x  y)  z = x  (y  z)"
and l_one: "!!x. x  carrier G ==> 𝟭  x = x"
and r_one: "!!x. x  carrier G ==> x  𝟭 = x"
shows "monoid G"
by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:
"x  Units G ==> x  carrier G"
by (unfold Units_def) fast

lemma (in monoid) one_unique:
assumes "u  carrier G"
and "x. x  carrier G  u  x = x"
shows "u = 𝟭"
using assms(2)[OF one_closed] r_one[OF assms(1)] by simp

lemma (in monoid) inv_unique:
assumes eq: "y  x = 𝟭"  "x  y' = 𝟭"
and G: "x  carrier G"  "y  carrier G"  "y'  carrier G"
shows "y = y'"
proof -
from G eq have "y = y  (x  y')" by simp
also from G have "... = (y  x)  y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed

lemma (in monoid) Units_m_closed [simp, intro]:
assumes x: "x  Units G" and y: "y  Units G"
shows "x  y  Units G"
proof -
from x obtain x' where x: "x  carrier G" "x'  carrier G" and xinv: "x  x' = 𝟭" "x'  x = 𝟭"
unfolding Units_def by fast
from y obtain y' where y: "y  carrier G" "y'  carrier G" and yinv: "y  y' = 𝟭" "y'  y = 𝟭"
unfolding Units_def by fast
from x y xinv yinv have "y'  (x'  x)  y = 𝟭" by simp
moreover from x y xinv yinv have "x  (y  y')  x' = 𝟭" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
by simp (metis m_assoc m_closed)
qed

lemma (in monoid) Units_one_closed [intro, simp]:
"𝟭  Units G"
by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:
"x  Units G ==> inv x  carrier G"
by (metis (mono_tags, lifting) inv_unique the_equality)

lemma (in monoid) Units_l_inv_ex:
"x  Units G ==> y  carrier G. y  x = 𝟭"
by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:
"x  Units G ==> y  carrier G. x  y = 𝟭"
by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:
"x  Units G ==> inv x  x = 𝟭"
apply (unfold Units_def m_inv_def, simp)
by (metis (mono_tags, lifting) inv_unique the_equality)

lemma (in monoid) Units_r_inv [simp]:
"x  Units G ==> x  inv x = 𝟭"
by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex inv_unique)

lemma (in monoid) inv_one [simp]:
"inv 𝟭 = 𝟭"
by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms)

lemma (in monoid) Units_inv_Units [intro, simp]:
"x  Units G ==> inv x  Units G"
proof -
assume x: "x  Units G"
show "inv x  Units G"
intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed

lemma (in monoid) Units_l_cancel [simp]:
"[| x  Units G; y  carrier G; z  carrier G |] ==>
(x  y = x  z) = (y = z)"
proof
assume eq: "x  y = x  z"
and G: "x  Units G"  "y  carrier G"  "z  carrier G"
then have "(inv x  x)  y = (inv x  x)  z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x  Units G"  "y  carrier G"  "z  carrier G"
then show "x  y = x  z" by simp
qed

lemma (in monoid) Units_inv_inv [simp]:
"x  Units G ==> inv (inv x) = x"
proof -
assume x: "x  Units G"
then have "inv x  inv (inv x) = inv x  x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed

lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
fix x y
assume G: "x  Units G"  "y  Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp
qed

lemma (in monoid) Units_inv_comm:
assumes inv: "x  y = 𝟭"
and G: "x  Units G"  "y  Units G"
shows "y  x = 𝟭"
proof -
from G have "x  y  x = x  𝟭" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed

lemma (in monoid) carrier_not_empty: "carrier G  {}"
by auto

(* Jacobson defines submonoid here. *)
(* Jacobson defines the order of a monoid here. *)

subsection ‹Groups›

text ‹
A group is a monoid all of whose elements are invertible.
›

locale group = monoid +
assumes Units: "carrier G <= Units G"

lemma (in group) is_group [iff]: "group G" by (rule group_axioms)

lemma (in group) is_monoid [iff]: "monoid G"
by (rule monoid_axioms)

theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
and one_closed [simp]: "𝟭  carrier G"
and m_assoc:
"!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
(x  y)  z = x  (y  z)"
and l_one [simp]: "!!x. x  carrier G ==> 𝟭  x = x"
and l_inv_ex: "!!x. x  carrier G ==> y  carrier G. y  x = 𝟭"
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
(x  y = x  z) = (y = z)"
proof
fix x y z
assume eq: "x  y = x  z"
and G: "x  carrier G"  "y  carrier G"  "z  carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv  carrier G"
and l_inv: "x_inv  x = 𝟭" by fast
from G eq xG have "(x_inv  x)  y = (x_inv  x)  z"
with G show "y = z" by (simp add: l_inv)
next
fix x y z
assume eq: "y = z"
and G: "x  carrier G"  "y  carrier G"  "z  carrier G"
then show "x  y = x  z" by simp
qed
have r_one:
"!!x. x  carrier G ==> x  𝟭 = x"
proof -
fix x
assume x: "x  carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv  carrier G"
and l_inv: "x_inv  x = 𝟭" by fast
from x xG have "x_inv  (x  𝟭) = x_inv  x"
by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x  𝟭 = x" by simp
qed
have inv_ex:
"x. x  carrier G  y  carrier G. y  x = 𝟭  x  y = 𝟭"
proof -
fix x
assume x: "x  carrier G"
with l_inv_ex obtain y where y: "y  carrier G"
and l_inv: "y  x = 𝟭" by fast
from x y have "y  (x  y) = y  𝟭"
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x  y = 𝟭"
by simp
from x y show "y  carrier G. y  x = 𝟭  x  y = 𝟭"
by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G  Units G"
by (unfold Units_def) fast
show ?thesis
by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed

lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x  carrier G ==> y  carrier G. y  x = 𝟭"
shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
show "Units G  carrier G" by fast
next
show "carrier G  Units G" by (rule Units)
qed

lemma (in group) inv_closed [intro, simp]:
"x  carrier G ==> inv x  carrier G"
using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:
"x  carrier G ==> y  carrier G. y  x = 𝟭"
using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:
"x  carrier G ==> y  carrier G. x  y = 𝟭"
using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:
"x  carrier G ==> inv x  x = 𝟭"
by simp

subsection ‹Cancellation Laws and Basic Properties›

lemma (in group) inv_eq_1_iff [simp]:
assumes "x  carrier G" shows "invGx = 𝟭G x = 𝟭G⇙"
proof -
have "x = 𝟭" if "inv x = 𝟭"
proof -
have "inv x  x = 𝟭"
using assms l_inv by blast
then show "x = 𝟭"
using that assms by simp
qed
then show ?thesis
by auto
qed

lemma (in group) r_inv [simp]:
"x  carrier G ==> x  inv x = 𝟭"
by simp

lemma (in group) right_cancel [simp]:
"[| x  carrier G; y  carrier G; z  carrier G |] ==>
(y  x = z  x) = (y = z)"
by (metis inv_closed m_assoc r_inv r_one)

lemma (in group) inv_inv [simp]:
"x  carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp

lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:
"[| x  carrier G; y  carrier G |] ==> inv (x  y) = inv y  inv x"
proof -
assume G: "x  carrier G"  "y  carrier G"
then have "inv (x  y)  (x  y) = (inv y  inv x)  (x  y)"
with G show ?thesis by (simp del: l_inv Units_l_inv)
qed

lemma (in group) inv_comm:
"[| x  y = 𝟭; x  carrier G; y  carrier G |] ==> y  x = 𝟭"
by (rule Units_inv_comm) auto

lemma (in group) inv_equality:
"[|y  x = 𝟭; x  carrier G; y  carrier G|] ==> inv x = y"
using inv_unique r_inv by blast

lemma (in group) inv_solve_left:
" a  carrier G; b  carrier G; c  carrier G   a = inv b  c  c = b  a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_left':
" a  carrier G; b  carrier G; c  carrier G   inv b  c = a  c = b  a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right:
" a  carrier G; b  carrier G; c  carrier G   a = b  inv c  b = a  c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right':
"a  carrier G; b  carrier G; c  carrier G  b  inv c = a  b = a  c"
by (auto simp: m_assoc)

subsection ‹Power›

consts
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a"  (infixr "[^]ı" 75)

begin
definition "nat_pow G a n = rec_nat 𝟭G(%u b. b Ga) n"
end

lemma (in monoid) nat_pow_closed [intro, simp]:
"x  carrier G ==> x [^] (n::nat)  carrier G"
by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:
"x [^] (0::nat) = 𝟭"

lemma (in monoid) nat_pow_Suc [simp]:
"x [^] (Suc n) = x [^] n  x"

lemma (in monoid) nat_pow_one [simp]:
"𝟭 [^] (n::nat) = 𝟭"
by (induct n) simp_all

lemma (in monoid) nat_pow_mult:
"x  carrier G ==> x [^] (n::nat)  x [^] m = x [^] (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_comm:
"x  carrier G  (x [^] (n::nat))  (x [^] (m :: nat)) = (x [^] m)  (x [^] n)"
using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute)

lemma (in monoid) nat_pow_Suc2:
"x  carrier G  x [^] (Suc n) = x  (x [^] n)"
using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n]
by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def)

lemma (in monoid) nat_pow_pow:
"x  carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)"

lemma (in monoid) nat_pow_consistent:
"x [^] (n :: nat) = x [^](G  carrier := H )n"
unfolding nat_pow_def by simp

lemma nat_pow_0 [simp]: "x [^]G(0::nat) = 𝟭G⇙"

lemma nat_pow_Suc [simp]: "x [^]G(Suc n) = (x [^]Gn)Gx"

lemma (in group) nat_pow_inv:
assumes "x  carrier G" shows "(inv x) [^] (i :: nat) = inv (x [^] i)"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i)
have "(inv x) [^] Suc i = ((inv x) [^] i)  inv x"
by simp
also have " ... = (inv (x [^] i))  inv x"
also have " ... = inv (x  (x [^] i))"
also have " ... = inv (x [^] (Suc i))"
using assms nat_pow_Suc2 by auto
finally show ?case .
qed

begin
definition "int_pow G a z =
(let p = rec_nat 𝟭G(%u b. b Ga)
in if z < 0 then invG(p (nat (-z))) else p (nat z))"
end

lemma int_pow_int: "x [^]G(int n) = x [^]Gn"

lemma pow_nat:
assumes "i0"
shows "x [^]Gnat i = x [^]Gi"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
next
case (neg n)
then show ?thesis
using assms by linarith
qed

lemma int_pow_0 [simp]: "x [^]G(0::int) = 𝟭G⇙"

lemma int_pow_def2: "a [^]Gz =
(if z < 0 then invG(a [^]G(nat (-z))) else a [^]G(nat z))"

lemma (in group) int_pow_one [simp]:
"𝟭 [^] (z::int) = 𝟭"

lemma (in group) int_pow_closed [intro, simp]:
"x  carrier G ==> x [^] (i::int)  carrier G"

lemma (in group) int_pow_1 [simp]:
"x  carrier G  x [^] (1::int) = x"

lemma (in group) int_pow_neg:
"x  carrier G  x [^] (-i::int) = inv (x [^] i)"

lemma (in group) int_pow_neg_int: "x  carrier G  x [^] -(int n) = inv (x [^] n)"

lemma (in group) int_pow_mult:
assumes "x  carrier G" shows "x [^] (i + j::int) = x [^] i  x [^] j"
proof -
have [simp]: "-i - j = -j - i" by simp
show ?thesis
by (auto simp: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult)
qed

lemma (in group) int_pow_inv:
"x  carrier G  (inv x) [^] (i :: int) = inv (x [^] i)"
by (metis int_pow_def2 nat_pow_inv)

lemma (in group) int_pow_pow:
assumes "x  carrier G"
shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
proof (cases)
assume n_ge: "n  0" thus ?thesis
proof (cases)
assume m_ge: "m  0" thus ?thesis
using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2 [where G=G]
next
assume m_lt: "¬ m  0"
with n_ge show ?thesis
by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow)
qed
next
assume n_lt: "¬ n  0" thus ?thesis
proof (cases)
assume m_ge: "m  0"
have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))"
by (metis (full_types) m_ge mult_minus_right nat_mult_distrib)
with m_ge n_lt show ?thesis
by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv nat_pow_pow)
next
assume m_lt: "¬ m  0" thus ?thesis
using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg nat_pow_inv nat_pow_pow)
qed
qed

lemma (in group) int_pow_diff:
"x  carrier G  x [^] (n - m :: int) = x [^] n  inv (x [^] m)"

lemma (in group) inj_on_multc: "c  carrier G  inj_on (λx. x  c) (carrier G)"

lemma (in group) inj_on_cmult: "c  carrier G  inj_on (λx. c  x) (carrier G)"

lemma (in monoid) group_commutes_pow:
fixes n::nat
shows "x  y = y  x; x  carrier G; y  carrier G  x [^] n  y = y  x [^] n"
apply (induction n, auto)
by (metis m_assoc nat_pow_closed)

lemma (in monoid) pow_mult_distrib:
assumes eq: "x  y = y  x" and xy: "x  carrier G" "y  carrier G"
shows "(x  y) [^] (n::nat) = x [^] n  y [^] n"
proof (induct n)
case (Suc n)
have "x  (y [^] n  y) = y [^] n  x  y"
by (simp add: eq group_commutes_pow m_assoc xy)
then show ?case
using assms Suc.hyps m_assoc by auto
qed auto

lemma (in group) int_pow_mult_distrib:
assumes eq: "x  y = y  x" and xy: "x  carrier G" "y  carrier G"
shows "(x  y) [^] (i::int) = x [^] i  y [^] i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (metis eq int_pow_int pow_mult_distrib xy)
next
case (neg n)
then show ?thesis
unfolding neg
apply (simp add: xy int_pow_neg_int del: of_nat_Suc)
by (metis eq inv_mult_group local.nat_pow_Suc nat_pow_closed pow_mult_distrib xy)
qed

lemma (in group) pow_eq_div2:
fixes m n :: nat
assumes x_car: "x  carrier G"
assumes pow_eq: "x [^] m = x [^] n"
shows "x [^] (m - n) = 𝟭"
proof (cases "m < n")
case False
have "𝟭  x [^] m = x [^] m" by (simp add: x_car)
also have " = x [^] (m - n)  x [^] n"
using False by (simp add: nat_pow_mult x_car)
also have " = x [^] (m - n)  x [^] m"
finally show ?thesis
by (metis nat_pow_closed one_closed right_cancel x_car)
qed simp

subsection ‹Submonoids›

locale submonoid = contributor ‹Martin Baillon›
fixes H and G (structure)
assumes subset: "H  carrier G"
and m_closed [intro, simp]: "x  H; y  H  x  y  H"
and one_closed [simp]: "𝟭  H"

lemma (in submonoid) is_submonoid: contributor ‹Martin Baillon›
"submonoid H G" by (rule submonoid_axioms)

lemma (in submonoid) mem_carrier [simp]: contributor ‹Martin Baillon›
"x  H  x  carrier G"
using subset by blast

lemma (in submonoid) submonoid_is_monoid [intro]: contributor ‹Martin Baillon›
assumes "monoid G"
shows "monoid (Gcarrier := H)"
proof -
interpret monoid G by fact
show ?thesis
qed

lemma submonoid_nonempty: contributor ‹Martin Baillon›
"~ submonoid {} G"
by (blast dest: submonoid.one_closed)

lemma (in submonoid) finite_monoid_imp_card_positive: contributor ‹Martin Baillon›
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_submonoid a have "submonoid {} G" by simp
with submonoid_nonempty show ?thesis by contradiction
qed

lemma (in monoid) monoid_incl_imp_submonoid : contributor ‹Martin Baillon›
assumes "H  carrier G"
and "monoid (Gcarrier := H)"
shows "submonoid H G"
proof (intro submonoid.intro[OF assms(1)])
have ab_eq : " a b. a  H  b  H  a Gcarrier := Hb = a  b" using assms by simp
have "a b. a  H  b  H  a  b  carrier (Gcarrier := H) "
using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
thus "a b. a  H  b  H  a  b  H" by simp
show "𝟭  H " using monoid.one_closed[OF assms(2)] assms by simp
qed

lemma (in monoid) inv_unique': contributor ‹Martin Baillon›
assumes "x  carrier G" "y  carrier G"
shows " x  y = 𝟭; y  x = 𝟭   y = inv x"
proof -
assume "x  y = 𝟭" and l_inv: "y  x = 𝟭"
hence unit: "x  Units G"
using assms unfolding Units_def by auto
show "y = inv x"
using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF unit]] .
qed

lemma (in monoid) m_inv_monoid_consistent: contributor ‹Paulo Emílio de Vilhena›
assumes "x  Units (G  carrier := H )" and "submonoid H G"
shows "inv(G  carrier := H )x = inv x"
proof -
have monoid: "monoid (G  carrier := H )"
using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] .
obtain y where y: "y  H" "x  y = 𝟭" "y  x = 𝟭"
using assms(1) unfolding Units_def by auto
have x: "x  H" and in_carrier: "x  carrier G" "y  carrier G"
using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def by auto
show ?thesis
using monoid.inv_unique'[OF monoid, of x y] x y
using inv_unique'[OF in_carrier y(2-3)] by auto
qed

subsection ‹Subgroups›

locale subgroup =
fixes H and G (structure)
assumes subset: "H  carrier G"
and m_closed [intro, simp]: "x  H; y  H  x  y  H"
and one_closed [simp]: "𝟭  H"
and m_inv_closed [intro,simp]: "x  H  inv x  H"

lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
"x  H  x  carrier G"
using subset by blast

lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (Gcarrier := H)"
proof -
interpret group G by fact
have "Group.monoid (Gcarrier := H)"
by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid subset)
then show ?thesis
by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier)
qed

lemma (in group) triv_subgroup: "subgroup {𝟭} G"
by (auto simp: subgroup_def)

lemma subgroup_is_submonoid:
assumes "subgroup H G" shows "submonoid H G"
using assms by (auto intro: submonoid.intro simp add: subgroup_def)

lemma (in group) subgroup_Units:
assumes "subgroup H G" shows "H  Units (G  carrier := H )"
using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]] by simp

lemma (in group) m_inv_consistent [simp]:
assumes "subgroup H G" "x  H"
shows "inv(G  carrier := H )x = inv x"
using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of H] by auto

lemma (in group) int_pow_consistent: contributor ‹Paulo Emílio de Vilhena›
assumes "subgroup H G" "x  H"
shows "x [^] (n :: int) = x [^](G  carrier := H )n"
proof (cases)
assume ge: "n  0"
hence "x [^] n = x [^] (nat n)"
using int_pow_def2 [of G] by auto
also have " ... = x [^](G  carrier := H )(nat n)"
using nat_pow_consistent by simp
also have " ... = x [^](G  carrier := H )n"
by (metis ge int_nat_eq int_pow_int)
finally show ?thesis .
next
assume "¬ n  0" hence lt: "n < 0" by simp
hence "x [^] n = inv (x [^] (nat (- n)))"
using int_pow_def2 [of G] by auto
also have " ... = (inv x) [^] (nat (- n))"
by (metis assms nat_pow_inv subgroup.mem_carrier)
also have " ... = (inv(G  carrier := H )x) [^](G  carrier := H )(nat (- n))"
using m_inv_consistent[OF assms] nat_pow_consistent by auto
also have " ... = inv(G  carrier := H )(x [^](G  carrier := H )(nat (- n)))"
using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto
also have " ... = x [^](G  carrier := H )n"
finally show ?thesis .
qed

text ‹
Since termH is nonempty, it contains some element termx.  Since
it is closed under inverse, it contains inv x›.  Since
it is closed under product, it contains x ⊗ inv x = 𝟭›.
›

lemma (in group) one_in_subset:
"[| H  carrier G; H  {}; a  H. inv a  H; aH. bH. a  b  H |]
==> 𝟭  H"
by force

text ‹A characterization of subgroups: closed, non-empty subset.›

lemma (in group) subgroupI:
assumes subset: "H  carrier G" and non_empty: "H  {}"
and inv: "!!a. a  H  inv a  H"
and mult: "!!a b. a  H; b  H  a  b  H"
shows "subgroup H G"
show "𝟭  H" by (rule one_in_subset) (auto simp only: assms)
qed

lemma (in group) subgroupE:
assumes "subgroup H G"
shows "H  carrier G"
and "H  {}"
and "a. a  H  inv a  H"
and "a b.  a  H; b  H   a  b  H"
using assms unfolding subgroup_def[of H G] by auto

declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
"¬ subgroup {} G"
by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive: "finite (carrier G)  0 < card H"
using subset one_closed card_gt_0_iff finite_subset by blast

lemma (in subgroup) subgroup_is_submonoid : contributor ‹Martin Baillon›
"submonoid H G"

lemma (in group) submonoid_subgroupI : contributor ‹Martin Baillon›
assumes "submonoid H G"
and "a. a  H  inv a  H"
shows "subgroup H G"
by (metis assms subgroup_def submonoid_def)

lemma (in group) group_incl_imp_subgroup: contributor ‹Martin Baillon›
assumes "H  carrier G"
and "group (Gcarrier := H)"
shows "subgroup H G"
proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
show "monoid (Gcarrier := H)" using group_def assms by blast
have ab_eq : " a b. a  H  b  H  a Gcarrier := Hb = a  b" using assms by simp
fix a  assume aH : "a  H"
have " invGcarrier := Ha  carrier G"
using assms aH group.inv_closed[OF assms(2)] by auto
moreover have "𝟭Gcarrier := H= 𝟭" using assms monoid.one_closed ab_eq one_def by simp
hence "a Gcarrier := HinvGcarrier := Ha= 𝟭"
using assms ab_eq aH  group.r_inv[OF assms(2)] by simp
hence "a  invGcarrier := Ha= 𝟭"
using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
ultimately have "invGcarrier := Ha = inv a"
by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
moreover have "invGcarrier := Ha  H"
using aH group.inv_closed[OF assms(2)] by auto
ultimately show "inv a  H" by auto
qed

subsection ‹Direct Products›

definition
DirProd :: "_  _  ('a × 'b) monoid" (infixr "××" 80) where
"G ×× H =
carrier = carrier G × carrier H,
mult = (λ(g, h) (g', h'). (g Gg', h Hh')),
one = (𝟭G, 𝟭H)"

lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G ×× H)"
proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)
qed

text‹Does not use the previous result because it's easier just to use auto.›
lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G ×× H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
qed

lemma carrier_DirProd [simp]: "carrier (G ×× H) = carrier G × carrier H"

lemma one_DirProd [simp]: "𝟭G ×× H= (𝟭G, 𝟭H)"

lemma mult_DirProd [simp]: "(g, h) (G ×× H)(g', h') = (g Gg', h Hh')"

lemma mult_DirProd': "x (G ×× H)y = (fst x Gfst y, snd x Hsnd y)"
by (subst mult_DirProd [symmetric]) simp

lemma DirProd_assoc: "(G ×× H ×× I) = (G ×× (H ×× I))"
by auto

lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g  carrier G"
and h: "h  carrier H"
shows "m_inv (G ×× H) (g, h) = (invGg, invHh)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G ×× H"
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed

lemma DirProd_subgroups :
assumes "group G"
and "subgroup H G"
and "group K"
and "subgroup I K"
shows "subgroup (H × I) (G ×× K)"
proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
have "H  carrier G" "I  carrier K" using subgroup.subset assms by blast+
thus "(H × I)  carrier (G ×× K)" unfolding DirProd_def by auto
have "Group.group ((Gcarrier := H) ×× (Kcarrier := I))"
using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
subgroup.subgroup_is_group[OF assms(4)assms(3)]].
moreover have "((Gcarrier := H) ×× (Kcarrier := I)) = ((G ×× K)carrier := H × I)"
unfolding DirProd_def using assms by simp
ultimately show "Group.group ((G ×× K)carrier := H × I)" by simp
qed

subsection ‹Homomorphisms (mono and epi) and Isomorphisms›

definition
hom :: "_ => _ => ('a => 'b) set" where
"hom G H =
{h. h  carrier G  carrier H
(x  carrier G. y  carrier G. h (x Gy) = h x Hh y)}"

lemma homI:
"x. x  carrier G  h x  carrier H;
x y. x  carrier G; y  carrier G  h (x Gy) = h x Hh y  h  hom G H"
by (auto simp: hom_def)

lemma hom_carrier: "h  hom G H  h  carrier G  carrier H"
by (auto simp: hom_def)

lemma hom_in_carrier: "h  hom G H; x  carrier G  h x  carrier H"
by (auto simp: hom_def)

lemma hom_compose:
" f  hom G H; g  hom H I   g  f  hom G I"
unfolding hom_def by (auto simp add: Pi_iff)

lemma (in group) hom_restrict:
assumes "h  hom G H" and "g. g  carrier G  h g = t g" shows "t  hom G H"
using assms unfolding hom_def by (auto simp add: Pi_iff)

lemma (in group) hom_compose:
"[|h  hom G H; i  hom H I|] ==> compose (carrier G) i h  hom G I"
by (fastforce simp add: hom_def compose_def)

lemma (in group) restrict_hom_iff [simp]:
"(λx. if x  carrier G then f x else g x)  hom G H  f  hom G H"

definition iso :: "_ => _ => ('a => 'b) set"
where "iso G H = {h. h  hom G H  bij_betw h (carrier G) (carrier H)}"

definition is_iso :: "_  _  bool" (infixr "" 60)
where "G  H = (iso G H   {})"

definition mon where "mon G H = {f  hom G H. inj_on f (carrier G)}"

definition epi where "epi G H = {f  hom G H. f  (carrier G) = carrier H}"

lemma isoI:
"h  hom G H; bij_betw h (carrier G) (carrier H)  h  iso G H"
by (auto simp: iso_def)

lemma is_isoI: "h  iso G H  G  H"
using is_iso_def by auto

lemma epi_iff_subset:
"f  epi G G'  f  hom G G'  carrier G'  f  carrier G"
by (auto simp: epi_def hom_def)

lemma iso_iff_mon_epi: "f  iso G H  f  mon G H  f  epi G H"
by (auto simp: iso_def mon_def epi_def bij_betw_def)

lemma iso_set_refl: "(λx. x)  iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma id_iso: "id  iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

corollary iso_refl [simp]: "G  G"
using iso_set_refl unfolding is_iso_def by auto

lemma iso_iff:
"h  iso G H  h  hom G H  h  (carrier G) = carrier H  inj_on h (carrier G)"
by (auto simp: iso_def hom_def bij_betw_def)

lemma iso_imp_homomorphism:
"h  iso G H  h  hom G H"

lemma trivial_hom:
"group H  (λx. one H)  hom G H"
by (auto simp: hom_def Group.group_def)

lemma (in group) hom_eq:
assumes "f  hom G H" "x. x  carrier G  f' x = f x"
shows "f'  hom G H"
using assms by (auto simp: hom_def)

lemma (in group) iso_eq:
assumes "f  iso G H" "x. x  carrier G  f' x = f x"
shows "f'  iso G H"
using assms  by (fastforce simp: iso_def inj_on_def bij_betw_def hom_eq image_iff)

lemma (in group) iso_set_sym:
assumes "h  iso G H"
shows "inv_into (carrier G) h  iso H G"
proof -
have h: "h  hom G H" "bij_betw h (carrier G) (carrier H)"
using assms by (auto simp add: iso_def bij_betw_inv_into)
then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier G)"
have "inv_into (carrier G) h  hom H G"
unfolding hom_def
proof safe
show *: "x. x  carrier H  inv_into (carrier G) h x  carrier G"
by (meson HG bij_betwE)
show "inv_into (carrier G) h (x Hy) = inv_into (carrier G) h x  inv_into (carrier G) h y"
if "x  carrier H" "y  carrier H" for x y
proof (rule inv_into_f_eq)
show "inj_on h (carrier G)"
using bij_betw_def h(2) by blast
show "inv_into (carrier G) h x  inv_into (carrier G) h y  carrier G"
show "h (inv_into (carrier G) h x  inv_into (carrier G) h y) = x Hy"
using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp add: "*" that)
qed
qed
then show ?thesis
by (simp add: Group.iso_def bij_betw_inv_into h)
qed

corollary (in group) iso_sym: "G  H  H  G"
using iso_set_sym unfolding is_iso_def by auto

lemma iso_set_trans:
"h  Group.iso G H; i  Group.iso H I  i  h  Group.iso G I"
by (force simp: iso_def hom_compose intro: bij_betw_trans)

corollary iso_trans [trans]: "G  H ; H  I  G  I"
using iso_set_trans unfolding is_iso_def by blast

lemma iso_same_card: "G  H  card (carrier G) = card (carrier H)"
using bij_betw_same_card  unfolding is_iso_def iso_def by auto

lemma iso_finite: "G  H  finite(carrier G)  finite(carrier H)"
by (auto simp: is_iso_def iso_def bij_betw_finite)

lemma mon_compose:
"f  mon G H; g  mon H K  (g  f)  mon G K"
by (auto simp: mon_def intro: hom_compose comp_inj_on inj_on_subset [OF _ hom_carrier])

lemma mon_compose_rev:
"f  hom G H; g  hom H K; (g  f)  mon G K  f  mon G H"
using inj_on_imageI2 by (auto simp: mon_def)

lemma epi_compose:
"f  epi G H; g  epi H K  (g  f)  epi G K"
using hom_compose by (force simp: epi_def hom_compose simp flip: image_image)

lemma epi_compose_rev:
"f  hom G H; g  hom H K; (g  f)  epi G K  g  epi H K"
by (fastforce simp: epi_def hom_def Pi_iff image_def set_eq_iff)

lemma iso_compose_rev:
"f  hom G H; g  hom H K; (g  f)  iso G K  f  mon G H  g  epi H K"
unfolding iso_iff_mon_epi using mon_compose_rev epi_compose_rev by blast

lemma epi_iso_compose_rev:
assumes "f  epi G H" "g  hom H K" "(g  f)  iso G K"
shows "f  iso G H  g  iso H K"
proof
show "f  iso G H"
by (metis (no_types, lifting) assms epi_def iso_compose_rev iso_iff_mon_epi mem_Collect_eq)
then have "f  hom G H  bij_betw f (carrier G) (carrier H)"
using Group.iso_def f  Group.iso G H by blast
then have "bij_betw g (carrier H) (carrier K)"
using Group.iso_def assms(3) bij_betw_comp_iff by blast
then show "g  iso H K"
using Group.iso_def assms(2) by blast
qed

lemma mon_left_invertible:
"f  hom G H; x. x  carrier G  g(f x) = x  f  mon G H"
by (simp add: mon_def inj_on_def) metis

lemma epi_right_invertible:
"g  hom H G; f  carrier G  carrier H; x. x  carrier G  g(f x) = x  g  epi H G"
by (force simp: Pi_iff epi_iff_subset image_subset_iff_funcset subset_iff)

lemma (in monoid) hom_imp_img_monoid: contributor ‹Paulo Emílio de Vilhena›
assumes "h  hom G H"
shows "monoid (H  carrier := h  (carrier G), one := h 𝟭G)" (is "monoid ?h_img")
proof (rule monoidI)
show "𝟭?h_img carrier ?h_img"
by auto
next
fix x y z assume "x  carrier ?h_img" "y  carrier ?h_img" "z  carrier ?h_img"
then obtain g1 g2 g3
where g1: "g1  carrier G" "x = h g1"
and g2: "g2  carrier G" "y = h g2"
and g3: "g3  carrier G" "z = h g3"
using image_iff[where ?f = h and ?A = "carrier G"] by auto
have aux_lemma:
"a b.  a  carrier G; b  carrier G   h a (?h_img)h b = h (a  b)"
using assms unfolding hom_def by auto

show "x (?h_img)𝟭(?h_img)= x"
using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp

show "𝟭(?h_img)(?h_img)x = x"
using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp

have "x (?h_img)y = h (g1  g2)"
using aux_lemma g1 g2 by auto
thus "x (?h_img)y  carrier ?h_img"
using g1(1) g2(1) by simp

have "(x (?h_img)y) (?h_img)z = h ((g1  g2)  g3)"
using aux_lemma g1 g2 g3 by auto
also have " ... = h (g1  (g2  g3))"
using m_assoc[OF g1(1) g2(1) g3(1)] by simp
also have " ... = x (?h_img)(y (?h_img)z)"
using aux_lemma g1 g2 g3 by auto
finally show "(x (?h_img)y) (?h_img)z = x (?h_img)(y (?h_img)z)" .
qed

lemma (in group) hom_imp_img_group: contributor ‹Paulo Emílio de Vilhena›
assumes "h  hom G H"
shows "group (H  carrier := h  (carrier G), one := h 𝟭G)" (is "group ?h_img")
proof -
interpret monoid ?h_img
using hom_imp_img_monoid[OF assms] .

show ?thesis
proof (unfold_locales)
show "carrier ?h_img  Units ?h_img"
have aux_lemma:
"g1 g2.  g1  carrier G; g2  carrier G   h g1 Hh g2 = h (g1  g2)"
using assms unfolding hom_def by auto

fix g1 assume g1: "g1  carrier G"
thus "g2  carrier G. (h g2) H(h g1) = h 𝟭  (h g1) H(h g2) = h 𝟭"
using aux_lemma[OF g1 inv_closed[OF g1]]
aux_lemma[OF inv_closed[OF g1] g1]
inv_closed by auto
qed
qed
qed

lemma (in group) iso_imp_group: contributor ‹Paulo Emílio de Vilhena›
assumes "G  H" and "monoid H"
shows "group H"
proof -
obtain φ where phi: "φ  iso G H" "inv_into (carrier G) φ  iso H G"
using iso_set_sym assms unfolding is_iso_def by blast
define ψ where psi_def: "ψ = inv_into (carrier G) φ"

have surj: "φ  (carrier G) = (carrier H)" "ψ  (carrier H) = (carrier G)"
and inj: "inj_on φ (carrier G)" "inj_on ψ (carrier H)"
and phi_hom: "g1 g2.  g1  carrier G; g2  carrier G   φ (g1  g2) = (φ g1) H(φ g2)"
and psi_hom: "h1 h2.  h1  carrier H; h2  carrier H   ψ (h1 Hh2) = (ψ h1)  (ψ h2)"
using phi psi_def unfolding iso_def bij_betw_def hom_def by auto

have phi_one: "φ 𝟭 = 𝟭H⇙"
proof -
have "(φ 𝟭) H𝟭H= (φ 𝟭) H(φ 𝟭)"
by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1))
thus ?thesis
by (metis (no_types, opaque_lifting) Units_eq Units_one_closed assms(2) f_inv_into_f imageI
monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
qed

have "carrier H  Units H"
proof
fix h assume h: "h  carrier H"
let ?inv_h = "φ (inv (ψ h))"
have "h H?inv_h = φ (ψ h) H?inv_h"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = φ ((ψ h)  inv (ψ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = φ 𝟭"
by (simp add: h inv_into_into psi_def surj(1))
finally have 1: "h H?inv_h = 𝟭H⇙"
using phi_one by simp

have "?inv_h Hh = ?inv_h Hφ (ψ h)"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = φ (inv (ψ h)  (ψ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = φ 𝟭"
by (simp add: h inv_into_into psi_def surj(1))
finally have 2: "?inv_h Hh = 𝟭H⇙"
using phi_one by simp

thus "h  Units H" unfolding Units_def using 1 2 h surj by fastforce
qed
thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
qed

corollary (in group) iso_imp_img_group: contributor ‹Paulo Emílio de Vilhena›
assumes "h  iso G H"
shows "group (H  one := h 𝟭 )"
proof -
let ?h_img = "H  carrier := h  (carrier G), one := h 𝟭 "
have "h  iso G ?h_img"
using assms unfolding iso_def hom_def bij_betw_def by auto
hence "G  ?h_img"
unfolding is_iso_def by auto
hence "group ?h_img"
using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp
moreover have "carrier H = carrier ?h_img"
using assms unfolding iso_def bij_betw_def by simp
hence "H  one := h 𝟭  = ?h_img"
by simp
ultimately show ?thesis by simp
qed

subsubsection ‹HOL Light's concept of an isomorphism pair›

definition group_isomorphisms
where
"group_isomorphisms G H f g
f  hom G H  g  hom H G
(x  carrier G. g(f x) = x)
(y  carrier H. f(g y) = y)"

lemma group_isomorphisms_sym: "group_isomorphisms G H f g  group_isomorphisms H G g f"
by (auto simp: group_isomorphisms_def)

lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g  f  iso G H"
by (auto simp: iso_def inj_on_def image_def group_isomorphisms_def hom_def bij_betw_def Pi_iff, metis+)

lemma (in group) iso_iff_group_isomorphisms:
"f  iso G H  (g. group_isomorphisms G H f g)"
proof safe
show "g. group_isomorphisms G H f g" if "f  Group.iso G H"
unfolding group_isomorphisms_def
proof (intro exI conjI)
let ?g = "inv_into (carrier G) f"
show "xcarrier G. ?g (f x) = x"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_left mem_Collect_eq that)
show "ycarrier H. f (?g y) = y"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_right mem_Collect_eq that)
qed (use Group.iso_def iso_set_sym that in blast+)
next
fix g
assume "group_isomorphisms G H f g"
then show "f  Group.iso G H"
by (auto simp: iso_def group_isomorphisms_def hom_in_carrier intro: bij_betw_byWitness)
qed

subsubsection ‹Involving direct products›

lemma DirProd_commute_iso_set:
shows "(λ(x,y). (y,x))  iso (G ×× H) (H ×× G)"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

corollary DirProd_commute_iso :
"(G ×× H)  (H ×× G)"
using DirProd_commute_iso_set unfolding is_iso_def by blast

lemma DirProd_assoc_iso_set:
shows "(λ(x,y,z). (x,(y,z)))  iso (G ×× H ×× I) (G ×× (H ×× I))"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

lemma (in group) DirProd_iso_set_trans:
assumes "g  iso G G2"
and "h  iso H I"
shows "(λ(x,y). (g x, h y))  iso (G ×× H) (G2 ×× I)"
proof-
have "(λ(x,y). (g x, h y))  hom (G ×× H) (G2 ×× I)"
using assms unfolding iso_def hom_def by auto
moreover have " inj_on (λ(x,y). (g x, h y)) (carrier (G ×× H))"
using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
moreover have "(λ(x, y). (g x, h y))  carrier (G ×× H) = carrier (G2 ×× I)"
using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
ultimately show "(λ(x,y). (g x, h y))  iso (G ×× H) (G2 ×× I)"
unfolding iso_def bij_betw_def by auto
qed

corollary (in group) DirProd_iso_trans :
assumes "G  G2" and "H  I"
shows "G ×× H  G2 ×× I"
using DirProd_iso_set_trans assms unfolding is_iso_def by blast

lemma hom_pairwise: "f  hom G (DirProd H K)  (fst  f)  hom G H  (snd  f)  hom G K"
apply (auto simp: hom_def mult_DirProd' dest: Pi_mem)
apply (metis Product_Type.mem_Times_iff comp_eq_dest_lhs funcset_mem)
by (metis mult_DirProd prod.collapse)

lemma hom_paired:
"(λx. (f x,g x))  hom G (DirProd H K)  f  hom G H  g  hom G K"

lemma hom_paired2:
assumes "group G" "group H"
shows "(λ(x,y). (f x,g y))  hom (DirProd G H) (DirProd G' H')  f  hom G G'  g  hom H H'"
using assms
by (fastforce simp: hom_def Pi_def dest!: group.is_monoid)

lemma iso_paired2:
assumes "group G" "group H"
shows "(λ(x,y). (f x,g y))  iso (DirProd G H) (DirProd G' H')  f  iso G G'  g  iso H H'"
using assms
by (fastforce simp add: iso_def inj_on_def bij_betw_def hom_paired2 image_paired_Times
times_eq_iff group_def monoid.carrier_not_empty)

lemma hom_of_fst:
assumes "group H"
shows "(f  fst)  hom (DirProd G H) K  f  hom G K"
proof -
interpret group H
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed

lemma hom_of_snd:
assumes "group G"
shows "(f  snd)  hom (DirProd G H) K  f  hom H K"
proof -
interpret group G
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed

subsection‹The locale for a homomorphism between two groups›

text‹Basis for homomorphism proofs: we assume two groups termG and
termH, with a homomorphism termh between them›
locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) +
fixes h
assumes homh [simp]: "h  hom G H"

declare group_hom.homh [simp]

lemma (in group_hom) hom_mult [simp]:
"[| x  carrier G; y  carrier G |] ==> h (x Gy) = h x Hh y"
proof -
assume "x  carrier G" "y  carrier G"
with homh [unfolded hom_def] show ?thesis by simp
qed

lemma (in group_hom) hom_closed [simp]:
"x  carrier G ==> h x  carrier H"
proof -
assume "x  carrier G"
with homh [unfolded hom_def] show ?thesis by auto
qed

lemma (in group_hom) one_closed: "h 𝟭  carrier H"
by simp

lemma (in group_hom) hom_one [simp]: "h 𝟭 = 𝟭H⇙"
proof -
have "h 𝟭 H𝟭H= h 𝟭 Hh 𝟭"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis
by (metis H.Units_eq H.Units_l_cancel H.one_closed local.one_closed)
qed

lemma hom_one:
assumes "h  hom G H" "group G" "group H"
shows "h (one G) = one H"
apply (rule group_hom.hom_one)
by (simp add: assms group_hom_axioms_def group_hom_def)

lemma hom_mult:
"h  hom G H; x  carrier G; y  carrier G  h (x Gy) = h x Hh y"
by (auto simp: hom_def)

lemma (in group_hom) inv_closed [simp]:
"x  carrier G ==> h (inv x)  carrier H"
by simp

lemma (in group_hom) hom_inv [simp]:
assumes "x  carrier G" shows "h (inv x) = invH(h x)"
proof -
have "h x Hh (inv x) = h x HinvH(h x)"
using assms by (simp flip: hom_mult)
with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed

lemma (in group) int_pow_is_hom: contributor ‹Joachim Breitner›
"x  carrier G  (([^]) x)  hom  carrier = UNIV, mult = (+), one = 0::int  G "
unfolding hom_def by (simp add: int_pow_mult)

lemma (in group_hom) img_is_subgroup: "subgroup (h  (carrier G)) H" contributor ‹Paulo Emílio de Vilhena›
apply (rule subgroupI)
apply (metis G.inv_closed hom_inv image_iff)
by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)

lemma (in group_hom) subgroup_img_is_subgroup: contributor ‹Paulo Emílio de Vilhena›
assumes "subgroup I G"
shows "subgroup (h  I) H"
proof -
have "h  hom (G  carrier := I ) H"
using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
unfolding hom_def by auto
hence "group_hom (G  carrier := I ) H h"
using subgroup.subgroup_is_group[OF assms G.is_group] is_group
unfolding group_hom_def group_hom_axioms_def by simp
thus ?thesis
using group_hom.img_is_subgroup[of "G  carrier := I " H h] by simp
qed

lemma (in subgroup) iso_subgroup: contributor ‹Jakob von Raumer›
assumes "group G" "group F"
assumes "φ  iso G F"
shows "subgroup (φ  H) F"
by (metis assms Group.iso_iff group_hom.intro group_hom_axioms_def group_hom.subgroup_img_is_subgroup subgroup_axioms)

lemma (in group_hom) induced_group_hom: contributor ‹Paulo Emílio de Vilhena›
assumes "subgroup I G"
shows "group_hom (G  carrier := I ) (H  carrier := h  I ) h"
proof -
have "h  hom (G  carrier := I ) (H  carrier := h  I )"
using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
thus ?thesis
unfolding group_hom_def group_hom_axioms_def
using subgroup.subgroup_is_group[OF assms G.is_group]
subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp
qed

text ‹An isomorphism restricts to an isomorphism of subgroups.›

lemma iso_restrict:
assumes "φ  iso G F"
assumes groups: "group G" "group F"
assumes HG: "subgroup H G"
shows "(restrict φ H)  iso (Gcarrier := H) (Fcarrier := φ  H)"
proof -
have "x y. x  H; y  H; x Gy  H  φ (x Gy) = φ x Fφ y"
by (meson assms hom_mult iso_imp_homomorphism subgroup.mem_carrier)
moreover have "x y. x  H; y  H; x Gy  H  φ x Fφ y = undefined"
moreover have "x y. x  H; y  H; φ x = φ y  x = y"
by (smt (verit, ccfv_SIG) assms group.iso_iff_group_isomorphisms group_isomorphisms_def subgroup.mem_carrier)
ultimately show ?thesis
by (auto simp: iso_def hom_def bij_betw_def inj_on_def)
qed

lemma (in group) canonical_inj_is_hom: contributor ‹Paulo Emílio de Vilhena›
assumes "subgroup H G"
shows "group_hom (G  carrier := H ) G id"
unfolding group_hom_def group_hom_axioms_def hom_def
using subgroup.subgroup_is_group[OF assms is_group]
is_group subgroup.subset[OF assms] by auto

lemma (in group_hom) hom_nat_pow: contributor ‹Paulo Emílio de Vilhena›
"x  carrier G  h (x [^] (n :: nat)) = (h x) [^]Hn"
by (induction n) auto

lemma (in group_hom) hom_int_pow: contributor ‹Paulo Emílio de Vilhena›
"x  carrier G  h (x [^] (n :: int)) = (h x) [^]Hn"
using hom_nat_pow by (simp add: int_pow_def2)

lemma hom_nat_pow:
"h  hom G H; x  carrier G; group G; group H  h (x [^]G(n :: nat)) = (h x) [^]Hn"
by (simp add: group_hom.hom_nat_pow group_hom_axioms_def group_hom_def)

lemma hom_int_pow:
"h  hom G H; x  carrier G; group G; group H  h (x [^]G(n :: int)) = (h x) [^]Hn"
by (simp add: group_hom.hom_int_pow group_hom_axioms.intro group_hom_def)

subsection ‹Commutative Structures›

text ‹
Naming convention: multiplicative structures that are commutative
are called \emph{commutative}, additive structures are called
\emph{Abelian}.
›

locale comm_monoid = monoid +
assumes m_comm: "x  carrier G; y  carrier G  x  y = y  x"

lemma (in comm_monoid) m_lcomm:
"x  carrier G; y  carrier G; z  carrier G
x  (y  z) = y  (x  z)"
proof -
assume xyz: "x  carrier G"  "y  carrier G"  "z  carrier G"
from xyz have "x  (y  z) = (x  y)  z" by (simp add: m_assoc)
also from xyz have "... = (y  x)  z" by (simp add: m_comm)
also from xyz have "... = y  (x  z)" by (simp add: m_assoc)
finally show ?thesis .
qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
and one_closed: "𝟭  carrier G"
and m_assoc:
"!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
(x  y)  z = x  (y  z)"
and l_one: "!!x. x  carrier G ==> 𝟭  x = x"
and m_comm:
"!!x y. [| x  carrier G; y  carrier G |] ==> x  y = y  x"
shows "comm_monoid G"
using l_one
by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"!!x y. [| x  carrier G; y  carrier G |] ==> x  y = y  x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)

lemma (in comm_monoid) submonoid_is_comm_monoid :
assumes "submonoid H G"
shows "comm_monoid (Gcarrier := H)"
proof (intro monoid.monoid_comm_monoidI)
show "monoid (Gcarrier := H)"
using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def by blast
show "x y. x  carrier (Gcarrier := H)  y  carrier (Gcarrier := H)
x Gcarrier := Hy = y Gcarrier := Hx"
by simp (meson assms m_comm submonoid.mem_carrier)
qed

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x  carrier G; y  carrier G |] ==> x  y = y  x"
shows "comm_group G"