Theory HyperNat

(*  Title:      HOL/Nonstandard_Analysis/HyperNat.thy
    Author:     Jacques D. Fleuriot
    Copyright:  1998  University of Cambridge

Converted to Isar and polished by lcp

section Hypernatural numbers

theory HyperNat
  imports StarDef

type_synonym hypnat = "nat star"

abbreviation hypnat_of_nat :: "nat  nat star"
  where "hypnat_of_nat  star_of"

definition hSuc :: "hypnat  hypnat"
  where hSuc_def [transfer_unfold]: "hSuc = *f* Suc"

subsection Properties Transferred from Naturals

lemma hSuc_not_zero [iff]: "m. hSuc m  0"
  by transfer (rule Suc_not_Zero)

lemma zero_not_hSuc [iff]: "m. 0  hSuc m"
  by transfer (rule Zero_not_Suc)

lemma hSuc_hSuc_eq [iff]: "m n. hSuc m = hSuc n  m = n"
  by transfer (rule nat.inject)

lemma zero_less_hSuc [iff]: "n. 0 < hSuc n"
  by transfer (rule zero_less_Suc)

lemma hypnat_minus_zero [simp]: "z::hypnat. z - z = 0"
  by transfer (rule diff_self_eq_0)

lemma hypnat_diff_0_eq_0 [simp]: "n::hypnat. 0 - n = 0"
  by transfer (rule diff_0_eq_0)

lemma hypnat_add_is_0 [iff]: "m n::hypnat. m + n = 0  m = 0  n = 0"
  by transfer (rule add_is_0)

lemma hypnat_diff_diff_left: "i j k::hypnat. i - j - k = i - (j + k)"
  by transfer (rule diff_diff_left)

lemma hypnat_diff_commute: "i j k::hypnat. i - j - k = i - k - j"
  by transfer (rule diff_commute)

lemma hypnat_diff_add_inverse [simp]: "m n::hypnat. n + m - n = m"
  by transfer (rule diff_add_inverse)

lemma hypnat_diff_add_inverse2 [simp]:  "m n::hypnat. m + n - n = m"
  by transfer (rule diff_add_inverse2)

lemma hypnat_diff_cancel [simp]: "k m n::hypnat. (k + m) - (k + n) = m - n"
  by transfer (rule diff_cancel)

lemma hypnat_diff_cancel2 [simp]: "k m n::hypnat. (m + k) - (n + k) = m - n"
  by transfer (rule diff_cancel2)

lemma hypnat_diff_add_0 [simp]: "m n::hypnat. n - (n + m) = 0"
  by transfer (rule diff_add_0)

lemma hypnat_diff_mult_distrib: "k m n::hypnat. (m - n) * k = (m * k) - (n * k)"
  by transfer (rule diff_mult_distrib)

lemma hypnat_diff_mult_distrib2: "k m n::hypnat. k * (m - n) = (k * m) - (k * n)"
  by transfer (rule diff_mult_distrib2)

lemma hypnat_le_zero_cancel [iff]: "n::hypnat. n  0  n = 0"
  by transfer (rule le_0_eq)

lemma hypnat_mult_is_0 [simp]: "m n::hypnat. m * n = 0  m = 0  n = 0"
  by transfer (rule mult_is_0)

lemma hypnat_diff_is_0_eq [simp]: "m n::hypnat. m - n = 0  m  n"
  by transfer (rule diff_is_0_eq)

lemma hypnat_not_less0 [iff]: "n::hypnat. ¬ n < 0"
  by transfer (rule not_less0)

lemma hypnat_less_one [iff]: "n::hypnat. n < 1  n = 0"
  by transfer (rule less_one)

lemma hypnat_add_diff_inverse: "m n::hypnat. ¬ m < n  n + (m - n) = m"
  by transfer (rule add_diff_inverse)

lemma hypnat_le_add_diff_inverse [simp]: "m n::hypnat. n  m  n + (m - n) = m"
  by transfer (rule le_add_diff_inverse)

lemma hypnat_le_add_diff_inverse2 [simp]: "m n::hypnat. n  m  (m - n) + n = m"
  by transfer (rule le_add_diff_inverse2)

declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]

lemma hypnat_le0 [iff]: "n::hypnat. 0  n"
  by transfer (rule le0)

lemma hypnat_le_add1 [simp]: "x n::hypnat. x  x + n"
  by transfer (rule le_add1)

lemma hypnat_add_self_le [simp]: "x n::hypnat. x  n + x"
  by transfer (rule le_add2)

lemma hypnat_add_one_self_less [simp]: "x < x + 1" for x :: hypnat
  by (fact less_add_one)

lemma hypnat_neq0_conv [iff]: "n::hypnat. n  0  0 < n"
  by transfer (rule neq0_conv)

lemma hypnat_gt_zero_iff: "0 < n  1  n" for n :: hypnat
  by (auto simp add: linorder_not_less [symmetric])

lemma hypnat_gt_zero_iff2: "0 < n  (m. n = m + 1)" for n :: hypnat
  by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)

lemma hypnat_add_self_not_less: "¬ x + y < x" for x y :: hypnat
  by (simp add: linorder_not_le [symmetric] add.commute [of x])

lemma hypnat_diff_split: "P (a - b)  (a < b  P 0)  (d. a = b + d  P d)"
  for a b :: hypnat
  ― ‹elimination of -› on hypnat›
proof (cases "a < b" rule: case_split)
  case True
  then show ?thesis
    by (auto simp add: hypnat_add_self_not_less order_less_imp_le hypnat_diff_is_0_eq [THEN iffD2])
  case False
  then show ?thesis
    by (auto simp add: linorder_not_less dest: order_le_less_trans)

subsection Properties of the set of embedded natural numbers

lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
  show "of_nat n = star_of n" for n
    by transfer simp

lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
  by (auto simp: Nats_def Standard_def)

lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n  Nats"
  by (simp add: Nats_eq_Standard)

lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = 1"
  by transfer simp

lemma hypnat_of_nat_Suc [simp]: "hypnat_of_nat (Suc n) = hypnat_of_nat n + 1"
  by transfer simp

lemma of_nat_eq_add: 
  fixes d::hypnat
  shows "of_nat m = of_nat n + d  d  range of_nat"
proof (induct n arbitrary: d)
  case (Suc n)
  then show ?case
    by (metis Nats_def Nats_eq_Standard Standard_simps(4) hypnat_diff_add_inverse of_nat_in_Nats)
qed auto

lemma Nats_diff [simp]: "a  Nats  b  Nats  a - b  Nats" for a b :: hypnat
  by (simp add: Nats_eq_Standard)

subsection Infinite Hypernatural Numbers -- termHNatInfinite

text The set of infinite hypernatural numbers.
definition HNatInfinite :: "hypnat set"
  where "HNatInfinite = {n. n  Nats}"

lemma Nats_not_HNatInfinite_iff: "x  Nats  x  HNatInfinite"
  by (simp add: HNatInfinite_def)

lemma HNatInfinite_not_Nats_iff: "x  HNatInfinite  x  Nats"
  by (simp add: HNatInfinite_def)

lemma star_of_neq_HNatInfinite: "N  HNatInfinite  star_of n  N"
  by (auto simp add: HNatInfinite_def Nats_eq_Standard)

lemma star_of_Suc_lessI: "N. star_of n < N  star_of (Suc n)  N  star_of (Suc n) < N"
  by transfer (rule Suc_lessI)

lemma star_of_less_HNatInfinite:
  assumes N: "N  HNatInfinite"
  shows "star_of n < N"
proof (induct n)
  case 0
  from N have "star_of 0  N"
    by (rule star_of_neq_HNatInfinite)
  then show ?case by simp
  case (Suc n)
  from N have "star_of (Suc n)  N"
    by (rule star_of_neq_HNatInfinite)
  with Suc show ?case
    by (rule star_of_Suc_lessI)

lemma star_of_le_HNatInfinite: "N  HNatInfinite  star_of n  N"
  by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])

subsubsection Closure Rules

lemma Nats_less_HNatInfinite: "x  Nats  y  HNatInfinite  x < y"
  by (auto simp add: Nats_def star_of_less_HNatInfinite)

lemma Nats_le_HNatInfinite: "x  Nats  y  HNatInfinite  x  y"
  by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])

lemma zero_less_HNatInfinite: "x  HNatInfinite  0 < x"
  by (simp add: Nats_less_HNatInfinite)

lemma one_less_HNatInfinite: "x  HNatInfinite  1 < x"
  by (simp add: Nats_less_HNatInfinite)

lemma one_le_HNatInfinite: "x  HNatInfinite  1  x"
  by (simp add: Nats_le_HNatInfinite)

lemma zero_not_mem_HNatInfinite [simp]: "0  HNatInfinite"
  by (simp add: HNatInfinite_def)

lemma Nats_downward_closed: "x  Nats  y  x  y  Nats" for x y :: hypnat
  using HNatInfinite_not_Nats_iff Nats_le_HNatInfinite by fastforce

lemma HNatInfinite_upward_closed: "x  HNatInfinite  x  y  y  HNatInfinite"
  using HNatInfinite_not_Nats_iff Nats_downward_closed by blast

lemma HNatInfinite_add: "x  HNatInfinite  x + y  HNatInfinite"
  using HNatInfinite_upward_closed hypnat_le_add1 by blast

lemma HNatInfinite_diff: "x  HNatInfinite; y  Nats  x - y  HNatInfinite"
  by (metis HNatInfinite_not_Nats_iff Nats_add Nats_le_HNatInfinite le_add_diff_inverse)

lemma HNatInfinite_is_Suc: "x  HNatInfinite  y. x = y + 1" for x :: hypnat
  using hypnat_gt_zero_iff2 zero_less_HNatInfinite by blast

subsection Existence of an infinite hypernatural number

text ω› is in fact an infinite hypernatural number = [<1, 2, 3, …>]›
definition whn :: hypnat
  where hypnat_omega_def: "whn = star_n (λn::nat. n)"

lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n  whn"
  by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)

lemma whn_neq_hypnat_of_nat: "whn  hypnat_of_nat n"
  by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)

lemma whn_not_Nats [simp]: "whn  Nats"
  by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)

lemma HNatInfinite_whn [simp]: "whn  HNatInfinite"
  by (simp add: HNatInfinite_def)

lemma lemma_unbounded_set [simp]: "eventually (λn::nat. m < n) 𝒰"
  by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])
     (auto simp add: cofinite_eq_sequentially eventually_at_top_dense)

lemma hypnat_of_nat_eq: "hypnat_of_nat m  = star_n (λn::nat. m)"
  by (simp add: star_of_def)

lemma SHNat_eq: "Nats = {n. N. n = hypnat_of_nat N}"
  by (simp add: Nats_def image_def)

lemma Nats_less_whn: "n  Nats  n < whn"
  by (simp add: Nats_less_HNatInfinite)

lemma Nats_le_whn: "n  Nats  n  whn"
  by (simp add: Nats_le_HNatInfinite)

lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
  by (simp add: Nats_less_whn)

lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n  whn"
  by (simp add: Nats_le_whn)

lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
  by (simp add: Nats_less_whn)

lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
  by (simp add: Nats_less_whn)

subsubsection Alternative characterization of the set of infinite hypernaturals

text termHNatInfinite = {N. n  Nats. n < N}

textunused, but possibly interesting
lemma HNatInfinite_FreeUltrafilterNat_eventually:
  assumes "k::nat. eventually (λn. f n  k) 𝒰"
  shows "eventually (λn. m < f n) 𝒰"
proof (induct m)
  case 0
  then show ?case
    using assms eventually_mono by fastforce
  case (Suc m)
  then show ?case
    using assms [of "Suc m"] eventually_elim2 by fastforce

lemma HNatInfinite_iff: "HNatInfinite = {N. n  Nats. n < N}"
  using HNatInfinite_def Nats_less_HNatInfinite by auto

subsubsection Alternative Characterization of termHNatInfinite using Free Ultrafilter

lemma HNatInfinite_FreeUltrafilterNat:
  "star_n X  HNatInfinite  u. eventually (λn. u < X n) 𝒰"
  by (metis (full_types) starP2_star_of starP_star_n star_less_def star_of_less_HNatInfinite)

lemma FreeUltrafilterNat_HNatInfinite:
  "u. eventually (λn. u < X n) 𝒰  star_n X  HNatInfinite"
  by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)

lemma HNatInfinite_FreeUltrafilterNat_iff:
  "(star_n X  HNatInfinite) = (u. eventually (λn. u < X n) 𝒰)"
  by (rule iffI [OF HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite])

subsection Embedding of the Hypernaturals into other types

definition of_hypnat :: "hypnat  'a::semiring_1_cancel star"
  where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"

lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
  by transfer (rule of_nat_0)

lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
  by transfer (rule of_nat_1)

lemma of_hypnat_hSuc: "m. of_hypnat (hSuc m) = 1 + of_hypnat m"
  by transfer (rule of_nat_Suc)

lemma of_hypnat_add [simp]: "m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
  by transfer (rule of_nat_add)

lemma of_hypnat_mult [simp]: "m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
  by transfer (rule of_nat_mult)

lemma of_hypnat_less_iff [simp]:
  "m n. of_hypnat m < (of_hypnat n::'a::linordered_semidom star)  m < n"
  by transfer (rule of_nat_less_iff)

lemma of_hypnat_0_less_iff [simp]:
  "n. 0 < (of_hypnat n::'a::linordered_semidom star)  0 < n"
  by transfer (rule of_nat_0_less_iff)

lemma of_hypnat_less_0_iff [simp]: "m. ¬ (of_hypnat m::'a::linordered_semidom star) < 0"
  by transfer (rule of_nat_less_0_iff)

lemma of_hypnat_le_iff [simp]:
  "m n. of_hypnat m  (of_hypnat n::'a::linordered_semidom star)  m  n"
  by transfer (rule of_nat_le_iff)

lemma of_hypnat_0_le_iff [simp]: "n. 0  (of_hypnat n::'a::linordered_semidom star)"
  by transfer (rule of_nat_0_le_iff)

lemma of_hypnat_le_0_iff [simp]: "m. (of_hypnat m::'a::linordered_semidom star)  0  m = 0"
  by transfer (rule of_nat_le_0_iff)

lemma of_hypnat_eq_iff [simp]:
  "m n. of_hypnat m = (of_hypnat n::'a::linordered_semidom star)  m = n"
  by transfer (rule of_nat_eq_iff)

lemma of_hypnat_eq_0_iff [simp]: "m. (of_hypnat m::'a::linordered_semidom star) = 0  m = 0"
  by transfer (rule of_nat_eq_0_iff)

lemma HNatInfinite_of_hypnat_gt_zero:
  "N  HNatInfinite  (0::'a::linordered_semidom star) < of_hypnat N"
  by (rule ccontr) (simp add: linorder_not_less)