Theory List_Lexorder

(*  Title:      HOL/Library/List_Lexorder.thy
    Author:     Norbert Voelker
*)

section Lexicographic order on lists

theory List_Lexorder
imports Main
begin

instantiation list :: (ord) ord
begin

definition
  list_less_def: "xs < ys  (xs, ys)  lexord {(u, v). u < v}"

definition
  list_le_def: "(xs :: _ list)  ys  xs < ys  xs = ys"

instance ..

end

instance list :: (order) order
proof
  let ?r = "{(u, v::'a). u < v}"
  have tr: "trans ?r"
    using trans_def by fastforce
  have §: False
    if "(xs,ys)  lexord ?r" "(ys,xs)  lexord ?r" for xs ys :: "'a list"
  proof -
    have "(xs,xs)  lexord ?r"
      using that transD [OF lexord_transI [OF tr]] by blast
    then show False
      by (meson case_prodD lexord_irreflexive less_irrefl mem_Collect_eq)
  qed
  show "xs  xs" for xs :: "'a list" by (simp add: list_le_def)
  show "xs  zs" if "xs  ys" and "ys  zs" for xs ys zs :: "'a list"
    using that transD [OF lexord_transI [OF tr]] by (auto simp add: list_le_def list_less_def)
  show "xs = ys" if "xs  ys" "ys  xs" for xs ys :: "'a list"
    using § that list_le_def list_less_def by blast
  show "xs < ys  xs  ys  ¬ ys  xs" for xs ys :: "'a list"
    by (auto simp add: list_less_def list_le_def dest: §)
qed

instance list :: (linorder) linorder
proof
  fix xs ys :: "'a list"
  have "total (lexord {(u, v::'a). u < v})"
    by (rule total_lexord) (auto simp: total_on_def)
  then show "xs  ys  ys  xs"
    by (auto simp add: total_on_def list_le_def list_less_def)
qed

instantiation list :: (linorder) distrib_lattice
begin

definition "(inf :: 'a list  _) = min"

definition "(sup :: 'a list  _) = max"

instance
  by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2)

end

lemma not_less_Nil [simp]: "¬ x < []"
  by (simp add: list_less_def)

lemma Nil_less_Cons [simp]: "[] < a # x"
  by (simp add: list_less_def)

lemma Cons_less_Cons [simp]: "a # x < b # y  a < b  a = b  x < y"
  by (simp add: list_less_def)

lemma le_Nil [simp]: "x  []  x = []"
  unfolding list_le_def by (cases x) auto

lemma Nil_le_Cons [simp]: "[]  x"
  unfolding list_le_def by (cases x) auto

lemma Cons_le_Cons [simp]: "a # x  b # y  a < b  a = b  x  y"
  unfolding list_le_def by auto

instantiation list :: (order) order_bot
begin

definition "bot = []"

instance
  by standard (simp add: bot_list_def)

end

lemma less_list_code [code]:
  "xs < ([]::'a::{equal, order} list)  False"
  "[] < (x::'a::{equal, order}) # xs  True"
  "(x::'a::{equal, order}) # xs < y # ys  x < y  x = y  xs < ys"
  by simp_all

lemma less_eq_list_code [code]:
  "x # xs  ([]::'a::{equal, order} list)  False"
  "[]  (xs::'a::{equal, order} list)  True"
  "(x::'a::{equal, order}) # xs  y # ys  x < y  x = y  xs  ys"
  by simp_all

end