Theory List_Lenlexorder
section ‹Lexicographic order on lists›
text ‹This version prioritises length and can yield wellorderings›
theory List_Lenlexorder
imports Main
begin
instantiation list :: (ord) ord
begin
definition
  list_less_def: "xs < ys ⟷ (xs, ys) ∈ lenlex {(u, v). u < v}"
definition
  list_le_def: "(xs :: _ list) ≤ ys ⟷ xs < ys ∨ xs = ys"
instance ..
end
instance list :: (order) order
proof
  have tr: "trans {(u, v::'a). u < v}"
    using trans_def by fastforce
  have §: False
    if "(xs,ys) ∈ lenlex {(u, v). u < v}" "(ys,xs) ∈ lenlex {(u, v). u < v}" for xs ys :: "'a list"
  proof -
    have "(xs,xs) ∈ lenlex {(u, v). u < v}"
      using that transD [OF lenlex_transI [OF tr]] by blast
    then show False
      by (meson case_prodD lenlex_irreflexive less_irrefl mem_Collect_eq)
  qed
  show "xs ≤ xs" for xs :: "'a list" by (simp add: list_le_def)
  show "xs ≤ zs" if "xs ≤ ys" and "ys ≤ zs" for xs ys zs :: "'a list"
    using that transD [OF lenlex_transI [OF tr]] by (auto simp add: list_le_def list_less_def)
  show "xs = ys" if "xs ≤ ys" "ys ≤ xs" for xs ys :: "'a list"
    using § that list_le_def list_less_def by blast
  show "xs < ys ⟷ xs ≤ ys ∧ ¬ ys ≤ xs" for xs ys :: "'a list"
    by (auto simp add: list_less_def list_le_def dest: §)
qed
instance list :: (linorder) linorder
proof
  fix xs ys :: "'a list"
  have "total (lenlex {(u, v::'a). u < v})"
    by (rule total_lenlex) (auto simp: total_on_def)
  then show "xs ≤ ys ∨ ys ≤ xs"
    by (auto simp add: total_on_def list_le_def list_less_def)
qed
instance list :: (wellorder) wellorder
proof
  fix P :: "'a list ⇒ bool" and a
  assume "⋀x. (⋀y. y < x ⟹ P y) ⟹ P x" 
  then show "P a"
    unfolding list_less_def by (metis wf_lenlex wf_induct wf_lenlex wf)
qed
instantiation list :: (linorder) distrib_lattice
begin
definition "(inf :: 'a list ⇒ _) = min"
definition "(sup :: 'a list ⇒ _) = max"
instance
  by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2)
end
lemma not_less_Nil [simp]: "¬ x < []"
  by (simp add: list_less_def)
lemma Nil_less_Cons [simp]: "[] < a # x"
  by (simp add: list_less_def)
lemma Cons_less_Cons: "a # x < b # y ⟷ length x < length y ∨ length x = length y ∧ (a < b ∨ a = b ∧ x < y)"
  using lenlex_length
  by (fastforce simp: list_less_def Cons_lenlex_iff)
lemma le_Nil [simp]: "x ≤ [] ⟷ x = []"
  unfolding list_le_def by (cases x) auto
lemma Nil_le_Cons [simp]: "[] ≤ x"
  unfolding list_le_def by (cases x) auto
lemma Cons_le_Cons: "a # x ≤ b # y ⟷ length x < length y ∨ length x = length y ∧ (a < b ∨ a = b ∧ x ≤ y)"
  by (auto simp: list_le_def Cons_less_Cons)
instantiation list :: (order) order_bot
begin
definition "bot = []"
instance
  by standard (simp add: bot_list_def)
end
end