Theory Induction_Schema

(*  Title:      HOL/Examples/Induction_Schema.thy
    Author:     Alexander Krauss, TU Muenchen
*)

section ‹Examples of automatically derived induction rules›

theory Induction_Schema
imports Main
begin

subsection ‹Some simple induction principles on nat›

lemma nat_standard_induct: (* cf. Nat.thy *)
  "P 0; n. P n  P (Suc n)  P x"
by induction_schema (pat_completeness, lexicographic_order)

lemma nat_induct2:
  " P 0; P (Suc 0); k. P k ==> P (Suc k) ==> P (Suc (Suc k)) 
   P n"
by induction_schema (pat_completeness, lexicographic_order)

lemma minus_one_induct:
  "n::nat. (n  0  P (n - 1))  P n  P x"
by induction_schema (pat_completeness, lexicographic_order)

theorem diff_induct: (* cf. Nat.thy *)
  "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
by induction_schema (pat_completeness, lexicographic_order)

lemma list_induct2': (* cf. List.thy *)
  " P [] [];
  x xs. P (x#xs) [];
  y ys. P [] (y#ys);
   x xs y ys. P xs ys   P (x#xs) (y#ys) 
  P xs ys"
by induction_schema (pat_completeness, lexicographic_order)

theorem even_odd_induct:
  assumes "R 0"
  assumes "Q 0"
  assumes "n. Q n  R (Suc n)"
  assumes "n. R n  Q (Suc n)"
  shows "R n" "Q n"
  using assms
by induction_schema (pat_completeness+, lexicographic_order)

end