Theory Wellorder_Constructions

(*  Title:      HOL/Cardinals/Wellorder_Constructions.thy
    Author:     Andrei Popescu, TU Muenchen
    Copyright   2012

Constructions on wellorders.
*)

section ‹Constructions on Wellorders›

theory Wellorder_Constructions
  imports
    Wellorder_Embedding Order_Union
begin

unbundle cardinal_syntax

declare
  ordLeq_Well_order_simp[simp]
  not_ordLeq_iff_ordLess[simp]
  not_ordLess_iff_ordLeq[simp]
  Func_empty[simp]
  Func_is_emp[simp]



subsection ‹Order filters versus restrictions and embeddings›

lemma ofilter_subset_iso:
  assumes WELL: "Well_order r" and
    OFA: "ofilter r A" and OFB: "ofilter r B"
  shows "(A = B) = iso (Restr r A) (Restr r B) id"
  using assms by (auto simp add: ofilter_subset_embedS_iso)


subsection ‹Ordering the well-orders by existence of embeddings›

corollary ordLeq_refl_on: "refl_on {r. Well_order r} ordLeq"
  using ordLeq_reflexive unfolding ordLeq_def refl_on_def
  by blast

corollary ordLeq_trans: "trans ordLeq"
  using trans_def[of ordLeq] ordLeq_transitive by blast

corollary ordLeq_preorder_on: "preorder_on {r. Well_order r} ordLeq"
  by(auto simp add: preorder_on_def ordLeq_refl_on ordLeq_trans)

corollary ordIso_refl_on: "refl_on {r. Well_order r} ordIso"
  using ordIso_reflexive unfolding refl_on_def ordIso_def
  by blast

corollary ordIso_trans: "trans ordIso"
  using trans_def[of ordIso] ordIso_transitive by blast

corollary ordIso_sym: "sym ordIso"
  by (auto simp add: sym_def ordIso_symmetric)

corollary ordIso_equiv: "equiv {r. Well_order r} ordIso"
  by (auto simp add:  equiv_def ordIso_sym ordIso_refl_on ordIso_trans)

lemma ordLess_Well_order_simp[simp]:
  assumes "r <o r'"
  shows "Well_order r  Well_order r'"
  using assms unfolding ordLess_def by simp

lemma ordIso_Well_order_simp[simp]:
  assumes "r =o r'"
  shows "Well_order r  Well_order r'"
  using assms unfolding ordIso_def by simp

lemma ordLess_irrefl: "irrefl ordLess"
  by(unfold irrefl_def, auto simp add: ordLess_irreflexive)

lemma ordLess_or_ordIso:
  assumes WELL: "Well_order r" and WELL': "Well_order r'"
  shows "r <o r'  r' <o r  r =o r'"
  unfolding ordLess_def ordIso_def
  using assms embedS_or_iso[of r r'] by auto

corollary ordLeq_ordLess_Un_ordIso:
  "ordLeq = ordLess  ordIso"
  by (auto simp add: ordLeq_iff_ordLess_or_ordIso)

lemma ordIso_or_ordLess:
  assumes WELL: "Well_order r" and WELL': "Well_order r'"
  shows "r =o r'  r <o r'  r' <o r"
  using assms ordLess_or_ordLeq ordLeq_iff_ordLess_or_ordIso by blast

lemmas ord_trans = ordIso_transitive ordLeq_transitive ordLess_transitive
  ordIso_ordLeq_trans ordLeq_ordIso_trans
  ordIso_ordLess_trans ordLess_ordIso_trans
  ordLess_ordLeq_trans ordLeq_ordLess_trans

lemma ofilter_ordLeq:
  assumes "Well_order r" and "ofilter r A"
  shows "Restr r A ≤o r"
by (metis assms inf.orderE ofilter_embed ofilter_subset_ordLeq refl_on_def wo_rel.Field_ofilter wo_rel.REFL wo_rel.intro)

corollary under_Restr_ordLeq:
  "Well_order r  Restr r (under r a) ≤o r"
  by (auto simp add: ofilter_ordLeq wo_rel.under_ofilter wo_rel_def)


subsection ‹Copy via direct images›

lemma Id_dir_image: "dir_image Id f  Id"
  unfolding dir_image_def by auto

lemma Un_dir_image:
  "dir_image (r1  r2) f = (dir_image r1 f)  (dir_image r2 f)"
  unfolding dir_image_def by auto

lemma Int_dir_image:
  assumes "inj_on f (Field r1  Field r2)"
  shows "dir_image (r1 Int r2) f = (dir_image r1 f) Int (dir_image r2 f)"
proof
  show "dir_image (r1 Int r2) f  (dir_image r1 f) Int (dir_image r2 f)"
    using assms unfolding dir_image_def inj_on_def by auto
next
  show "(dir_image r1 f) Int (dir_image r2 f)  dir_image (r1 Int r2) f"
    by (clarsimp simp: dir_image_def) (metis FieldI1 FieldI2 UnCI assms inj_on_def)
qed

(* More facts on ordinal sum: *)

lemma Osum_embed:
  assumes FLD: "Field r Int Field r' = {}" and
    WELL: "Well_order r" and WELL': "Well_order r'"
  shows "embed r (r Osum r') id"
proof-
  have 1: "Well_order (r Osum r')"
    using assms by (auto simp add: Osum_Well_order)
  moreover
  have "compat r (r Osum r') id"
    unfolding compat_def Osum_def by auto
  moreover
  have "inj_on id (Field r)" by simp
  moreover
  have "ofilter (r Osum r') (Field r)"
    using 1 FLD
    by (auto simp add: wo_rel_def wo_rel.ofilter_def Osum_def under_def Field_iff disjoint_iff)
  ultimately show ?thesis
    using assms by (auto simp add: embed_iff_compat_inj_on_ofilter)
qed

corollary Osum_ordLeq:
  assumes FLD: "Field r Int Field r' = {}" and
    WELL: "Well_order r" and WELL': "Well_order r'"
  shows "r ≤o r Osum r'"
  using assms Osum_embed Osum_Well_order
  unfolding ordLeq_def by blast

lemma Well_order_embed_copy:
  assumes WELL: "well_order_on A r" and
    INJ: "inj_on f A" and SUB: "f ` A  B"
  shows "r'. well_order_on B r'  r ≤o r'"
proof-
  have "bij_betw f A (f ` A)"
    using INJ inj_on_imp_bij_betw by blast
  then obtain r'' where "well_order_on (f ` A) r''" and 1: "r =o r''"
    using WELL  Well_order_iso_copy by blast
  hence 2: "Well_order r''  Field r'' = (f ` A)"
    using well_order_on_Well_order by blast
      (*  *)
  let ?C = "B - (f ` A)"
  obtain r''' where "well_order_on ?C r'''"
    using well_order_on by blast
  hence 3: "Well_order r'''  Field r''' = ?C"
    using well_order_on_Well_order by blast
      (*  *)
  let ?r' = "r'' Osum r'''"
  have "Field r'' Int Field r''' = {}"
    using 2 3 by auto
  hence "r'' ≤o ?r'" using Osum_ordLeq[of r'' r'''] 2 3 by blast
  hence 4: "r ≤o ?r'" using 1 ordIso_ordLeq_trans by blast
      (*  *)
  hence "Well_order ?r'" unfolding ordLeq_def by auto
  moreover
  have "Field ?r' = B" using 2 3 SUB by (auto simp add: Field_Osum)
  ultimately show ?thesis using 4 by blast
qed


subsection ‹The maxim among a finite set of ordinals›

text ‹The correct phrasing would be ``a maxim of ...", as ≤o› is only a preorder.›

definition isOmax :: "'a rel set  'a rel  bool"
  where
    "isOmax  R r  r  R  (r'  R. r' ≤o r)"

definition omax :: "'a rel set  'a rel"
  where
    "omax R == SOME r. isOmax R r"

lemma exists_isOmax:
  assumes "finite R" and "R  {}" and " r  R. Well_order r"
  shows " r. isOmax R r"
proof-
  have "finite R  R  {}  ( r  R. Well_order r)  ( r. isOmax R r)"
    apply(erule finite_induct) apply(simp add: isOmax_def)
  proof(clarsimp)
    fix r :: "('a × 'a) set" and R assume *: "finite R" and **: "r  R"
      and ***: "Well_order r" and ****: "rR. Well_order r"
      and IH: "R  {}  (p. isOmax R p)"
    let ?R' = "insert r R"
    show "p'. (isOmax ?R' p')"
    proof(cases "R = {}")
      case True
      thus ?thesis
        by (simp add: "***" isOmax_def ordLeq_reflexive)
    next
      case False
      then obtain p where p: "isOmax R p" using IH by auto
      hence  "Well_order p" using **** unfolding isOmax_def by simp
      then consider  "r ≤o p" | "p ≤o r"
        using *** ordLeq_total by auto
      then show ?thesis 
      proof cases
        case 1
        then show ?thesis
         using p unfolding isOmax_def by auto
      next
        case 2
        then show ?thesis
          by (metis "***" insert_iff isOmax_def ordLeq_reflexive ordLeq_transitive p)
      qed
    qed
  qed
  thus ?thesis using assms by auto
qed

lemma omax_isOmax:
  assumes "finite R" and "R  {}" and " r  R. Well_order r"
  shows "isOmax R (omax R)"
  unfolding omax_def using assms
  by(simp add: exists_isOmax someI_ex)

lemma omax_in:
  assumes "finite R" and "R  {}" and " r  R. Well_order r"
  shows "omax R  R"
  using assms omax_isOmax unfolding isOmax_def by blast

lemma Well_order_omax:
  assumes "finite R" and "R  {}" and "rR. Well_order r"
  shows "Well_order (omax R)"
  using assms omax_in by blast

lemma omax_maxim:
  assumes "finite R" and " r  R. Well_order r" and "r  R"
  shows "r ≤o omax R"
  using assms omax_isOmax unfolding isOmax_def by blast

lemma omax_ordLeq:
  assumes "finite R" and "R  {}" and " r  R. r ≤o p"
  shows "omax R ≤o p"
  by (meson assms omax_in ordLeq_Well_order_simp)

lemma omax_ordLess:
  assumes "finite R" and "R  {}" and " r  R. r <o p"
  shows "omax R <o p"
  by (meson assms omax_in ordLess_Well_order_simp)

lemma omax_ordLeq_elim:
  assumes "finite R" and " r  R. Well_order r"
    and "omax R ≤o p" and "r  R"
  shows "r ≤o p"
  by (meson assms omax_maxim ordLeq_transitive)

lemma omax_ordLess_elim:
  assumes "finite R" and " r  R. Well_order r"
    and "omax R <o p" and "r  R"
  shows "r <o p"
  by (meson assms omax_maxim ordLeq_ordLess_trans)

lemma ordLeq_omax:
  assumes "finite R" and " r  R. Well_order r"
    and "r  R" and "p ≤o r"
  shows "p ≤o omax R"
  by (meson assms omax_maxim ordLeq_transitive)

lemma ordLess_omax:
  assumes "finite R" and " r  R. Well_order r"
    and "r  R" and "p <o r"
  shows "p <o omax R"
  by (meson assms omax_maxim ordLess_ordLeq_trans)

lemma omax_ordLeq_mono:
  assumes P: "finite P" and R: "finite R"
    and NE_P: "P  {}" and Well_R: " r  R. Well_order r"
    and LEQ: " p  P.  r  R. p ≤o r"
  shows "omax P ≤o omax R"
  by (meson LEQ NE_P P R Well_R omax_ordLeq ordLeq_omax)

lemma omax_ordLess_mono:
  assumes P: "finite P" and R: "finite R"
    and NE_P: "P  {}" and Well_R: " r  R. Well_order r"
    and LEQ: " p  P.  r  R. p <o r"
  shows "omax P <o omax R"
  by (meson LEQ NE_P P R Well_R omax_ordLess ordLess_omax)


subsection ‹Limit and succesor ordinals›

lemma embed_underS2:
  assumes r: "Well_order r" and g: "embed r s g" and a: "a  Field r"
  shows "g ` underS r a = underS s (g a)"
  by (meson a bij_betw_def embed_underS g r)

lemma bij_betw_insert:
  assumes "b  A" and "f b  A'" and "bij_betw f A A'"
  shows "bij_betw f (insert b A) (insert (f b) A')"
  using notIn_Un_bij_betw[OF assms] by auto

context wo_rel
begin

lemma underS_induct:
  assumes "a. ( a1. a1  underS a  P a1)  P a"
  shows "P a"
  by (induct rule: well_order_induct) (rule assms, simp add: underS_def)

lemma suc_underS:
  assumes B: "B  Field r" and A: "AboveS B  {}" and b: "b  B"
  shows "b  underS (suc B)"
  using suc_AboveS[OF B A] b unfolding underS_def AboveS_def by auto

lemma underS_supr:
  assumes bA: "b  underS (supr A)" and A: "A  Field r"
  shows " a  A. b  underS a"
proof(rule ccontr, simp)
  have bb: "b  Field r" using bA unfolding underS_def Field_def by auto
  assume "aA.  b  underS a"
  hence 0: "a  A. (a,b)  r" using A bA unfolding underS_def
    by simp (metis REFL in_mono max2_def max2_greater refl_on_domain)
  have "(supr A, b)  r"
    by (simp add: "0" A bb supr_least)
  thus False
    by (metis antisymD bA underS_E wo_rel.ANTISYM wo_rel_axioms)
qed

lemma underS_suc:
  assumes bA: "b  underS (suc A)" and A: "A  Field r"
  shows " a  A. b  under a"
proof(rule ccontr, simp)
  have bb: "b  Field r" using bA unfolding underS_def Field_def by auto
  assume "aA.  b  under a"
  hence 0: "a  A. a  underS b" using A bA
    by (metis bb in_mono max2_def max2_greater mem_Collect_eq underS_I under_def)
  have "(suc A, b)  r"
    by (metis "0" A bb suc_least underS_E)
  thus False
    by (metis antisymD bA underS_E wo_rel.ANTISYM wo_rel_axioms)
qed

lemma (in wo_rel) in_underS_supr:
  assumes "j  underS i" and "i  A" and "A  Field r" and "Above A  {}"
  shows "j  underS (supr A)"
  by (meson assms LIN in_mono supr_greater supr_inField underS_incl_iff)

lemma inj_on_Field:
  assumes A: "A  Field r" and f: " a b. a  A; b  A; a  underS b  f a  f b"
  shows "inj_on f A"
  by (smt (verit) A f in_notinI inj_on_def subsetD underS_I)

lemma ofilter_init_seg_of:
  assumes "ofilter F"
  shows "Restr r F initial_segment_of r"
  using assms unfolding ofilter_def init_seg_of_def under_def by auto

lemma underS_init_seg_of_Collect:
  assumes "j1 j2. j2  underS i; (j1, j2)  r  R j1 initial_segment_of R j2"
  shows "{R j |j. j  underS i}  Chains init_seg_of"
  using TOTALS assms 
  by (clarsimp simp: Chains_def) (meson BNF_Least_Fixpoint.underS_Field)

lemma (in wo_rel) Field_init_seg_of_Collect:
  assumes "j1 j2. j2  Field r; (j1, j2)  r  R j1 initial_segment_of R j2"
  shows "{R j |j. j  Field r}  Chains init_seg_of"
  using TOTALS assms by (auto simp: Chains_def)

subsubsection ‹Successor and limit elements of an ordinal›

definition "succ i  suc {i}"

definition "isSucc i   j. aboveS j  {}  i = succ j"

definition "zero = minim (Field r)"

definition "isLim i  ¬ isSucc i"

lemma zero_smallest[simp]:
  assumes "j  Field r" shows "(zero, j)  r"
  by (simp add: assms wo_rel.ofilter_linord wo_rel_axioms zero_def)

lemma zero_in_Field: assumes "Field r  {}"  shows "zero  Field r"
  using assms unfolding zero_def by (metis Field_ofilter minim_in ofilter_def)

lemma leq_zero_imp[simp]:
  "(x, zero)  r  x = zero"
  by (metis ANTISYM WELL antisymD well_order_on_domain zero_smallest)

lemma leq_zero[simp]:
  assumes "Field r  {}"  shows "(x, zero)  r  x = zero"
  using zero_in_Field[OF assms] in_notinI[of x zero] by auto

lemma under_zero[simp]:
  assumes "Field r  {}" shows "under zero = {zero}"
  using assms unfolding under_def by auto

lemma underS_zero[simp,intro]: "underS zero = {}"
  unfolding underS_def by auto

lemma isSucc_succ: "aboveS i  {}  isSucc (succ i)"
  unfolding isSucc_def succ_def by auto

lemma succ_in_diff:
  assumes "aboveS i  {}"  shows "(i,succ i)  r  succ i  i"
  using assms suc_greater[of "{i}"] unfolding succ_def AboveS_def aboveS_def Field_def by auto

lemmas succ_in[simp] = succ_in_diff[THEN conjunct1]
lemmas succ_diff[simp] = succ_in_diff[THEN conjunct2]

lemma succ_in_Field[simp]:
  assumes "aboveS i  {}"  shows "succ i  Field r"
  using succ_in[OF assms] unfolding Field_def by auto

lemma succ_not_in:
  assumes "aboveS i  {}" shows "(succ i, i)  r"
  by (metis FieldI2 assms max2_equals1 max2_equals2 succ_diff succ_in)

lemma not_isSucc_zero: "¬ isSucc zero"
  by (metis isSucc_def leq_zero_imp succ_in_diff)

lemma isLim_zero[simp]: "isLim zero"
  by (metis isLim_def not_isSucc_zero)

lemma succ_smallest:
  assumes "(i,j)  r" and "i  j"
  shows "(succ i, j)  r"
  by (metis Field_iff assms empty_subsetI insert_subset singletonD suc_least succ_def)

lemma isLim_supr:
  assumes f: "i  Field r" and l: "isLim i"
  shows "i = supr (underS i)"
proof(rule equals_supr)
  fix j assume j: "j  Field r" and 1: " j'. j'  underS i  (j',j)  r"
  show "(i,j)  r" 
  proof(intro in_notinI[OF _ f j], safe)
    assume ji: "(j,i)  r" "j  i"
    hence a: "aboveS j  {}" unfolding aboveS_def by auto
    hence "i  succ j" using l unfolding isLim_def isSucc_def by auto
    moreover have "(succ j, i)  r" using succ_smallest[OF ji] by auto
    ultimately have "succ j  underS i" unfolding underS_def by auto
    hence "(succ j, j)  r" using 1 by auto
    thus False using succ_not_in[OF a] by simp
  qed
qed(use f underS_def Field_def in fastforce)+

definition "pred i  SOME j. j  Field r  aboveS j  {}  succ j = i"

lemma pred_Field_succ:
  assumes "isSucc i" shows "pred i  Field r  aboveS (pred i)  {}  succ (pred i) = i"
proof-
  obtain j where j: "aboveS j  {}" "i = succ j" 
    using assms unfolding isSucc_def by auto
  then obtain "j  Field r" "j  i"
    by (metis FieldI1 succ_diff succ_in)
  then show ?thesis unfolding pred_def
    by (metis (mono_tags, lifting) j someI_ex)
qed

lemmas pred_Field[simp] = pred_Field_succ[THEN conjunct1]
lemmas aboveS_pred[simp] = pred_Field_succ[THEN conjunct2, THEN conjunct1]
lemmas succ_pred[simp] = pred_Field_succ[THEN conjunct2, THEN conjunct2]

lemma isSucc_pred_in:
  assumes "isSucc i"  shows "(pred i, i)  r"
  by (metis assms pred_Field_succ succ_in)

lemma isSucc_pred_diff:
  assumes "isSucc i"  shows "pred i  i"
  by (metis aboveS_pred assms succ_diff succ_pred)

(* todo: pred maximal, pred injective? *)

lemma succ_inj[simp]:
  assumes "aboveS i  {}" and "aboveS j  {}"
  shows "succ i = succ j  i = j"
  by (metis FieldI1 assms succ_def succ_in supr_under under_underS_suc)

lemma pred_succ[simp]:
  assumes "aboveS j  {}"  shows "pred (succ j) = j"
  using assms isSucc_def pred_Field_succ succ_inj by blast

lemma less_succ[simp]:
  assumes "aboveS i  {}"
  shows "(j, succ i)  r  (j,i)  r  j = succ i"
  by (metis FieldI1 assms in_notinI max2_equals1 max2_equals2 max2_iff succ_in succ_smallest)

lemma underS_succ[simp]:
  assumes "aboveS i  {}"
  shows "underS (succ i) = under i"
  unfolding underS_def under_def by (auto simp: assms succ_not_in)

lemma succ_mono:
  assumes "aboveS j  {}" and "(i,j)  r"
  shows "(succ i, succ j)  r"
  by (metis (full_types) assms less_succ succ_smallest)

lemma under_succ[simp]:
  assumes "aboveS i  {}"
  shows "under (succ i) = insert (succ i) (under i)"
  using less_succ[OF assms] unfolding under_def by auto

definition mergeSL :: "('a  'b  'b)  (('a  'b)  'a  'b)  ('a  'b)  'a  'b"
  where
    "mergeSL S L f i  if isSucc i then S (pred i) (f (pred i)) else L f i"


subsubsection ‹Well-order recursion with (zero), succesor, and limit›

definition worecSL :: "('a  'b  'b)  (('a  'b)  'a  'b)  'a  'b"
  where "worecSL S L  worec (mergeSL S L)"

definition "adm_woL L  f g i. isLim i  (junderS i. f j = g j)  L f i = L g i"

lemma mergeSL: "adm_woL L adm_wo (mergeSL S L)"
  unfolding adm_wo_def adm_woL_def isLim_def
  by (smt (verit, ccfv_threshold) isSucc_pred_diff isSucc_pred_in mergeSL_def underS_I)

lemma worec_fixpoint1: "adm_wo H  worec H i = H (worec H) i"
  by (metis worec_fixpoint)

lemma worecSL_isSucc:
  assumes a: "adm_woL L" and i: "isSucc i"
  shows "worecSL S L i = S (pred i) (worecSL S L (pred i))"
  by (metis a i mergeSL mergeSL_def worecSL_def worec_fixpoint)

lemma worecSL_succ:
  assumes a: "adm_woL L" and i: "aboveS j  {}"
  shows "worecSL S L (succ j) = S j (worecSL S L j)"
  by (simp add: a i isSucc_succ worecSL_isSucc)

lemma worecSL_isLim:
  assumes a: "adm_woL L" and i: "isLim i"
  shows "worecSL S L i = L (worecSL S L) i"
  by (metis a i isLim_def mergeSL mergeSL_def worecSL_def worec_fixpoint)

definition worecZSL :: "'b  ('a  'b  'b)  (('a  'b)  'a  'b)  'a  'b"
  where "worecZSL Z S L  worecSL S (λ f a. if a = zero then Z else L f a)"

lemma worecZSL_zero:
  assumes a: "adm_woL L"
  shows "worecZSL Z S L zero = Z"
  by (smt (verit, best) adm_woL_def assms isLim_zero worecSL_isLim worecZSL_def)

lemma worecZSL_succ:
  assumes a: "adm_woL L" and i: "aboveS j  {}"
  shows "worecZSL Z S L (succ j) = S j (worecZSL Z S L j)"
  unfolding worecZSL_def
  by (smt (verit, best) a adm_woL_def i worecSL_succ)

lemma worecZSL_isLim:
  assumes a: "adm_woL L" and "isLim i" and "i  zero"
  shows "worecZSL Z S L i = L (worecZSL Z S L) i"
proof-
  let ?L = "λ f a. if a = zero then Z else L f a"
  have "worecZSL Z S L i = ?L (worecZSL Z S L) i"
    unfolding worecZSL_def by (smt (verit, best) adm_woL_def assms worecSL_isLim)
  also have " = L (worecZSL Z S L) i" using assms by simp
  finally show ?thesis .
qed


subsubsection ‹Well-order succ-lim induction›

lemma ord_cases:
  obtains j where "i = succ j" and "aboveS j  {}"  | "isLim i"
  by (metis isLim_def isSucc_def)

lemma well_order_inductSL[case_names Suc Lim]:
  assumes "i. aboveS i  {}; P i  P (succ i)"  "i. isLim i; j. j  underS i  P j  P i"
  shows "P i"
proof(induction rule: well_order_induct)
  case (1 x)
  then show ?case     
    by (metis assms ord_cases succ_diff succ_in underS_E)
qed

lemma well_order_inductZSL[case_names Zero Suc Lim]:
  assumes "P zero"
    and  "i. aboveS i  {}; P i  P (succ i)" and
    "i. isLim i; i  zero; j. j  underS i  P j  P i"
  shows "P i"
  by (metis assms well_order_inductSL)

(* Succesor and limit ordinals *)
definition "isSuccOrd   j  Field r.  i  Field r. (i,j)  r"
definition "isLimOrd  ¬ isSuccOrd"

lemma isLimOrd_succ:
  assumes isLimOrd and "i  Field r"
  shows "succ i  Field r"
  using assms unfolding isLimOrd_def isSuccOrd_def
  by (metis REFL in_notinI refl_on_domain succ_smallest)

lemma isLimOrd_aboveS:
  assumes l: isLimOrd and i: "i  Field r"
  shows "aboveS i  {}"
proof-
  obtain j where "j  Field r" and "(j,i)  r"
    using assms unfolding isLimOrd_def isSuccOrd_def by auto
  hence "(i,j)  r  j  i" by (metis i max2_def max2_greater)
  thus ?thesis unfolding aboveS_def by auto
qed

lemma succ_aboveS_isLimOrd:
  assumes " i  Field r. aboveS i  {}  succ i  Field r"
  shows isLimOrd
  using assms isLimOrd_def isSuccOrd_def succ_not_in by blast

lemma isLim_iff:
  assumes l: "isLim i" and j: "j  underS i"
  shows " k. k  underS i  j  underS k"
  by (metis Order_Relation.underS_Field empty_iff isLim_supr j l underS_empty underS_supr)

end (* context wo_rel *)

abbreviation "zero  wo_rel.zero"
abbreviation "succ  wo_rel.succ"
abbreviation "pred  wo_rel.pred"
abbreviation "isSucc  wo_rel.isSucc"
abbreviation "isLim  wo_rel.isLim"
abbreviation "isLimOrd  wo_rel.isLimOrd"
abbreviation "isSuccOrd  wo_rel.isSuccOrd"
abbreviation "adm_woL  wo_rel.adm_woL"
abbreviation "worecSL  wo_rel.worecSL"
abbreviation "worecZSL  wo_rel.worecZSL"


subsection ‹Projections of wellorders›

definition "oproj r s f  Field s  f ` (Field r)  compat r s f"

lemma oproj_in:
  assumes "oproj r s f" and "(a,a')  r"
  shows "(f a, f a')  s"
  using assms unfolding oproj_def compat_def by auto

lemma oproj_Field:
  assumes f: "oproj r s f" and a: "a  Field r"
  shows "f a  Field s"
  using oproj_in[OF f] a unfolding Field_def by auto

lemma oproj_Field2:
  assumes f: "oproj r s f" and a: "b  Field s"
  shows " a  Field r. f a = b"
  using assms unfolding oproj_def by auto

lemma oproj_under:
  assumes f:  "oproj r s f" and a: "a  under r a'"
  shows "f a  under s (f a')"
  using oproj_in[OF f] a unfolding under_def by auto

(* An ordinal is embedded in another whenever it is embedded as an order
(not necessarily as initial segment):*)
theorem embedI:
  assumes r: "Well_order r" and s: "Well_order s"
    and f: " a. a  Field r  f a  Field s  f ` underS r a  underS s (f a)"
  shows " g. embed r s g"
proof-
  interpret r: wo_rel r by unfold_locales (rule r)
  interpret s: wo_rel s by unfold_locales (rule s)
  let ?G = "λ g a. suc s (g ` underS r a)"
  define g where "g = worec r ?G"
  have adm: "adm_wo r ?G" unfolding r.adm_wo_def image_def by auto
      (*  *)
  {fix a assume "a  Field r"
    hence "bij_betw g (under r a) (under s (g a)) 
          g a  under s (f a)"
    proof(induction a rule: r.underS_induct)
      case (1 a)
      hence a: "a  Field r"
        and IH1a: " a1. a1  underS r a  inj_on g (under r a1)"
        and IH1b: " a1. a1  underS r a  g ` under r a1 = under s (g a1)"
        and IH2: " a1. a1  underS r a  g a1  under s (f a1)"
        unfolding underS_def Field_def bij_betw_def by auto
      have fa: "f a  Field s" using f[OF a] by auto
      have g: "g a = suc s (g ` underS r a)"
        using r.worec_fixpoint[OF adm] unfolding g_def fun_eq_iff by blast
      have A0: "g ` underS r a  Field s"
        using IH1b by (metis IH2 image_subsetI in_mono under_Field)
      {fix a1 assume a1: "a1  underS r a"
        from IH2[OF this] have "g a1  under s (f a1)" .
        moreover have "f a1  underS s (f a)" using f[OF a] a1 by auto
        ultimately have "g a1  underS s (f a)" by (metis s.ANTISYM s.TRANS under_underS_trans)
      }
      hence fa_in: "f a  AboveS s (g ` underS r a)" unfolding AboveS_def
        using fa by simp (metis (lifting, full_types) mem_Collect_eq underS_def)
      hence A: "AboveS s (g ` underS r a)  {}" by auto
      have ga: "g a  Field s" unfolding g using s.suc_inField[OF A0 A] .
      show ?case
        unfolding bij_betw_def
      proof (intro conjI)
        show "inj_on g (r.under a)"
          by (metis A IH1a IH1b a bij_betw_def g ga r s s.suc_greater subsetI wellorders_totally_ordered_aux)
        show "g ` r.under a = s.under (g a)"
          by (metis A A0 IH1a IH1b a bij_betw_def g ga r s s.suc_greater wellorders_totally_ordered_aux)
        show "g a  s.under (f a)"
          by (simp add: fa_in g s.suc_least_AboveS under_def)
      qed
    qed
  }
  thus ?thesis unfolding embed_def by auto
qed

corollary ordLeq_def2:
  "r ≤o s  Well_order r  Well_order s 
               ( f.  a  Field r. f a  Field s  f ` underS r a  underS s (f a))"
  using embed_in_Field[of r s] embed_underS2[of r s] embedI[of r s]
  unfolding ordLeq_def by fast

lemma iso_oproj:
  assumes r: "Well_order r" and s: "Well_order s" and f: "iso r s f"
  shows "oproj r s f"
  by (metis embed_Field f iso_Field iso_iff iso_iff3 oproj_def r s)

theorem oproj_embed:
  assumes r: "Well_order r" and s: "Well_order s" and f: "oproj r s f"
  shows " g. embed s r g"
proof (rule embedI[OF s r, of "inv_into (Field r) f"], unfold underS_def, safe)
  fix b assume "b  Field s"
  thus "inv_into (Field r) f b  Field r" 
    using oproj_Field2[OF f] by (metis imageI inv_into_into)
next
  fix a b assume "b  Field s" "a  b" "(a, b)  s"
    "inv_into (Field r) f a = inv_into (Field r) f b"
  with f show False
    by (meson FieldI1 in_mono inv_into_injective oproj_def)
next
  fix a b assume *: "b  Field s" "a  b" "(a, b)  s"
  { assume notin: "(inv_into (Field r) f a, inv_into (Field r) f b)  r"
    moreover
    from *(3) have "a  Field s" unfolding Field_def by auto
    then have "(inv_into (Field r) f b, inv_into (Field r) f a)  r"
      by (meson "*"(1) notin f in_mono inv_into_into oproj_def r wo_rel.in_notinI wo_rel.intro)
    ultimately have "(inv_into (Field r) f b, inv_into (Field r) f a)  r"
      using r by (auto simp: well_order_on_def linear_order_on_def total_on_def)
    with f[unfolded oproj_def compat_def] *(1) a  Field s
      f_inv_into_f[of b f "Field r"] f_inv_into_f[of a f "Field r"]
    have "(b, a)  s" by (metis in_mono)
    with *(2,3) s have False
      by (auto simp: well_order_on_def linear_order_on_def partial_order_on_def antisym_def)
  } thus "(inv_into (Field r) f a, inv_into (Field r) f b)  r" by blast
qed

corollary oproj_ordLeq:
  assumes r: "Well_order r" and s: "Well_order s" and f: "oproj r s f"
  shows "s ≤o r"
  using f oproj_embed ordLess_iff ordLess_or_ordLeq r s by blast

end