Theory Monotonicity

(*  Title:      ZF/UNITY/Monotonicity.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2002  University of Cambridge

Monotonicity of an operator (meta-function) with respect to arbitrary
set relations.
*)

section‹Monotonicity of an Operator WRT a Relation›

theory Monotonicity imports GenPrefix MultisetSum
begin

definition
  mono1 :: "[i, i, i, i, ii]  o"  where
  "mono1(A, r, B, s, f) 
    (x  A. y  A. x,y  r  <f(x), f(y)>  s)  (x  A. f(x)  B)"

  (* monotonicity of a 2-place meta-function f *)

definition
  mono2 :: "[i, i, i, i, i, i, [i,i]i]  o"  where
  "mono2(A, r, B, s, C, t, f)  
    (x  A. y  A. u  B. v  B.
              x,y  r  u,v  s  <f(x,u), f(y,v)>  t) 
    (x  A. y  B. f(x,y)  C)"

 (* Internalized relations on sets and multisets *)

definition
  SetLe :: "i i"  where
  "SetLe(A)  {x,y  Pow(A)*Pow(A). x  y}"

definition
  MultLe :: "[i,i] i"  where
  "MultLe(A, r)  multirel(A, r - id(A))  id(Mult(A))"


lemma mono1D: 
  "mono1(A, r, B, s, f); x, y  r; x  A; y  A  <f(x), f(y)>  s"
by (unfold mono1_def, auto)

lemma mono2D: 
     "mono2(A, r, B, s, C, t, f);  
         x, y  r; u,v  s; x  A; y  A; u  B; v  B 
       <f(x, u), f(y,v)>  t"
by (unfold mono2_def, auto)


(** Monotonicity of take **)

lemma take_mono_left_lemma:
     "i  j; xs  list(A); i  nat; j  nat 
       <take(i, xs), take(j, xs)>  prefix(A)"
apply (case_tac "length (xs) ≤ i")
 apply (subgoal_tac "length (xs)  j")
  apply (simp)
 apply (blast intro: le_trans)
apply (drule not_lt_imp_le, auto)
apply (case_tac "length (xs) ≤ j")
 apply (auto simp add: take_prefix)
apply (drule not_lt_imp_le, auto)
apply (drule_tac m = i in less_imp_succ_add, auto)
apply (subgoal_tac "i #+ k  length (xs) ")
 apply (simp add: take_add prefix_iff take_type drop_type)
apply (blast intro: leI)
done

lemma take_mono_left:
     "i  j; xs  list(A); j  nat
       <take(i, xs), take(j, xs)>  prefix(A)"
by (blast intro: le_in_nat take_mono_left_lemma) 

lemma take_mono_right:
     "xs,ys  prefix(A); i  nat 
       <take(i, xs), take(i, ys)>  prefix(A)"
by (auto simp add: prefix_iff)

lemma take_mono:
     "i  j; xs, ys  prefix(A); j  nat
       <take(i, xs), take(j, ys)>  prefix(A)"
apply (rule_tac b = "take (j, xs) " in prefix_trans)
apply (auto dest: prefix_type [THEN subsetD] intro: take_mono_left take_mono_right)
done

lemma mono_take [iff]:
     "mono2(nat, Le, list(A), prefix(A), list(A), prefix(A), take)"
apply (unfold mono2_def Le_def, auto)
apply (blast intro: take_mono)
done

(** Monotonicity of length **)

lemmas length_mono = prefix_length_le

lemma mono_length [iff]:
     "mono1(list(A), prefix(A), nat, Le, length)"
  unfolding mono1_def
apply (auto dest: prefix_length_le simp add: Le_def)
done

(** Monotonicity of ∪ **)

lemma mono_Un [iff]: 
     "mono2(Pow(A), SetLe(A), Pow(A), SetLe(A), Pow(A), SetLe(A), (Un))"
by (unfold mono2_def SetLe_def, auto)

(* Monotonicity of multiset union *)

lemma mono_munion [iff]: 
     "mono2(Mult(A), MultLe(A,r), Mult(A), MultLe(A, r), Mult(A), MultLe(A, r), munion)"
  unfolding mono2_def MultLe_def
apply (auto simp add: Mult_iff_multiset)
apply (blast intro: munion_multirel_mono munion_multirel_mono1 munion_multirel_mono2 multiset_into_Mult)+
done

lemma mono_succ [iff]: "mono1(nat, Le, nat, Le, succ)"
by (unfold mono1_def Le_def, auto)

end