Theory Comp
section‹Composition›
theory Comp imports Union Increasing begin
definition
component :: "[i,i]⇒o" (infixl ‹component› 65) where
"F component H ≡ (∃G. F ⊔ G = H)"
definition
strict_component :: "[i,i]⇒o" (infixl ‹strict'_component› 65) where
"F strict_component H ≡ F component H ∧ F≠H"
definition
component_of :: "[i,i]⇒o" (infixl ‹component'_of› 65) where
"F component_of H ≡ (∃G. F ok G ∧ F ⊔ G = H)"
definition
strict_component_of :: "[i,i]⇒o" (infixl ‹strict'_component'_of› 65) where
"F strict_component_of H ≡ F component_of H ∧ F≠H"
definition
preserves :: "(i⇒i)⇒i" where
"preserves(f) ≡ {F:program. ∀z. F: stable({s:state. f(s) = z})}"
definition
fun_pair :: "[i⇒i, i ⇒i] ⇒(i⇒i)" where
"fun_pair(f, g) ≡ λx. <f(x), g(x)>"
definition
localize :: "[i⇒i, i] ⇒ i" where
"localize(f,F) ≡ mk_program(Init(F), Acts(F),
AllowedActs(F) ∩ (⋃G∈preserves(f). Acts(G)))"
lemma componentI:
"H component F | H component G ⟹ H component (F ⊔ G)"
apply (unfold component_def, auto)
apply (rule_tac x = "Ga ⊔ G" in exI)
apply (rule_tac [2] x = "G ⊔ F" in exI)
apply (auto simp add: Join_ac)
done
lemma component_eq_subset:
"G ∈ program ⟹ (F component G) ⟷
(Init(G) ⊆ Init(F) ∧ Acts(F) ⊆ Acts(G) ∧ AllowedActs(G) ⊆ AllowedActs(F))"
apply (unfold component_def, auto)
apply (rule exI)
apply (rule program_equalityI, auto)
done
lemma component_SKIP [simp]: "F ∈ program ⟹ SKIP component F"
unfolding component_def
apply (rule_tac x = F in exI)
apply (force intro: Join_SKIP_left)
done
lemma component_refl [simp]: "F ∈ program ⟹ F component F"
unfolding component_def
apply (rule_tac x = F in exI)
apply (force intro: Join_SKIP_right)
done
lemma SKIP_minimal: "F component SKIP ⟹ programify(F) = SKIP"
apply (rule program_equalityI)
apply (simp_all add: component_eq_subset, blast)
done
lemma component_Join1: "F component (F ⊔ G)"
by (unfold component_def, blast)
lemma component_Join2: "G component (F ⊔ G)"
unfolding component_def
apply (simp (no_asm) add: Join_commute)
apply blast
done
lemma Join_absorb1: "F component G ⟹ F ⊔ G = G"
by (auto simp add: component_def Join_left_absorb)
lemma Join_absorb2: "G component F ⟹ F ⊔ G = F"
by (auto simp add: Join_ac component_def)
lemma JOIN_component_iff:
"H ∈ program⟹(JOIN(I,F) component H) ⟷ (∀i ∈ I. F(i) component H)"
apply (case_tac "I=0", force)
apply (simp (no_asm_simp) add: component_eq_subset)
apply auto
apply blast
apply (rename_tac "y")
apply (drule_tac c = y and A = "AllowedActs (H)" in subsetD)
apply (blast elim!: not_emptyE)+
done
lemma component_JOIN: "i ∈ I ⟹ F(i) component (⨆i ∈ I. (F(i)))"
unfolding component_def
apply (blast intro: JOIN_absorb)
done
lemma component_trans: "⟦F component G; G component H⟧ ⟹ F component H"
unfolding component_def
apply (blast intro: Join_assoc [symmetric])
done
lemma component_antisym:
"⟦F ∈ program; G ∈ program⟧ ⟹(F component G ∧ G component F) ⟶ F = G"
apply (simp (no_asm_simp) add: component_eq_subset)
apply clarify
apply (rule program_equalityI, auto)
done
lemma Join_component_iff:
"H ∈ program ⟹
((F ⊔ G) component H) ⟷ (F component H ∧ G component H)"
apply (simp (no_asm_simp) add: component_eq_subset)
apply blast
done
lemma component_constrains:
"⟦F component G; G ∈ A co B; F ∈ program⟧ ⟹ F ∈ A co B"
apply (frule constrainsD2)
apply (auto simp add: constrains_def component_eq_subset)
done
lemma preserves_is_safety_prop [simp]: "safety_prop(preserves(f))"
unfolding preserves_def safety_prop_def
apply (auto dest: ActsD simp add: stable_def constrains_def)
apply (drule_tac c = act in subsetD, auto)
done
lemma preservesI [rule_format]:
"∀z. F ∈ stable({s ∈ state. f(s) = z}) ⟹ F ∈ preserves(f)"
apply (auto simp add: preserves_def)
apply (blast dest: stableD2)
done
lemma preserves_imp_eq:
"⟦F ∈ preserves(f); act ∈ Acts(F); ⟨s,t⟩ ∈ act⟧ ⟹ f(s) = f(t)"
unfolding preserves_def stable_def constrains_def
apply (subgoal_tac "s ∈ state ∧ t ∈ state")
prefer 2 apply (blast dest!: Acts_type [THEN subsetD], force)
done
lemma Join_preserves [iff]:
"(F ⊔ G ∈ preserves(v)) ⟷
(programify(F) ∈ preserves(v) ∧ programify(G) ∈ preserves(v))"
by (auto simp add: preserves_def INT_iff)
lemma JOIN_preserves [iff]:
"(JOIN(I,F): preserves(v)) ⟷ (∀i ∈ I. programify(F(i)):preserves(v))"
by (auto simp add: JOIN_stable preserves_def INT_iff)
lemma SKIP_preserves [iff]: "SKIP ∈ preserves(v)"
by (auto simp add: preserves_def INT_iff)
lemma fun_pair_apply [simp]: "fun_pair(f,g,x) = <f(x), g(x)>"
unfolding fun_pair_def
apply (simp (no_asm))
done
lemma preserves_fun_pair:
"preserves(fun_pair(v,w)) = preserves(v) ∩ preserves(w)"
apply (rule equalityI)
apply (auto simp add: preserves_def stable_def constrains_def, blast+)
done
lemma preserves_fun_pair_iff [iff]:
"F ∈ preserves(fun_pair(v, w)) ⟷ F ∈ preserves(v) ∩ preserves(w)"
by (simp add: preserves_fun_pair)
lemma fun_pair_comp_distrib:
"(fun_pair(f, g) comp h)(x) = fun_pair(f comp h, g comp h, x)"
by (simp add: fun_pair_def metacomp_def)
lemma comp_apply [simp]: "(f comp g)(x) = f(g(x))"
by (simp add: metacomp_def)
lemma preserves_type: "preserves(v)<=program"
by (unfold preserves_def, auto)
lemma preserves_into_program [TC]: "F ∈ preserves(f) ⟹ F ∈ program"
by (blast intro: preserves_type [THEN subsetD])
lemma subset_preserves_comp: "preserves(f) ⊆ preserves(g comp f)"
apply (auto simp add: preserves_def stable_def constrains_def)
apply (drule_tac x = "f (xb)" in spec)
apply (drule_tac x = act in bspec, auto)
done
lemma imp_preserves_comp: "F ∈ preserves(f) ⟹ F ∈ preserves(g comp f)"
by (blast intro: subset_preserves_comp [THEN subsetD])
lemma preserves_subset_stable: "preserves(f) ⊆ stable({s ∈ state. P(f(s))})"
apply (auto simp add: preserves_def stable_def constrains_def)
apply (rename_tac s' s)
apply (subgoal_tac "f (s) = f (s') ")
apply (force+)
done
lemma preserves_imp_stable:
"F ∈ preserves(f) ⟹ F ∈ stable({s ∈ state. P(f(s))})"
by (blast intro: preserves_subset_stable [THEN subsetD])
lemma preserves_imp_increasing:
"⟦F ∈ preserves(f); ∀x ∈ state. f(x):A⟧ ⟹ F ∈ Increasing.increasing(A, r, f)"
unfolding Increasing.increasing_def
apply (auto intro: preserves_into_program)
apply (rule_tac P = "λx. ⟨k, x⟩:r" in preserves_imp_stable, auto)
done
lemma preserves_id_subset_stable:
"st_set(A) ⟹ preserves(λx. x) ⊆ stable(A)"
apply (unfold preserves_def stable_def constrains_def, auto)
apply (drule_tac x = xb in spec)
apply (drule_tac x = act in bspec)
apply (auto dest: ActsD)
done
lemma preserves_id_imp_stable:
"⟦F ∈ preserves(λx. x); st_set(A)⟧ ⟹ F ∈ stable(A)"
by (blast intro: preserves_id_subset_stable [THEN subsetD])
lemma component_of_imp_component:
"F component_of H ⟹ F component H"
apply (unfold component_def component_of_def, blast)
done
lemma component_of_refl [simp]: "F ∈ program ⟹ F component_of F"
unfolding component_of_def
apply (rule_tac x = SKIP in exI, auto)
done
lemma component_of_SKIP [simp]: "F ∈ program ⟹SKIP component_of F"
apply (unfold component_of_def, auto)
apply (rule_tac x = F in exI, auto)
done
lemma component_of_trans:
"⟦F component_of G; G component_of H⟧ ⟹ F component_of H"
unfolding component_of_def
apply (blast intro: Join_assoc [symmetric])
done
lemma localize_Init_eq [simp]: "Init(localize(v,F)) = Init(F)"
by (unfold localize_def, simp)
lemma localize_Acts_eq [simp]: "Acts(localize(v,F)) = Acts(F)"
by (unfold localize_def, simp)
lemma localize_AllowedActs_eq [simp]:
"AllowedActs(localize(v,F)) = AllowedActs(F) ∩ (⋃G ∈ preserves(v). Acts(G))"
unfolding localize_def
apply (rule equalityI)
apply (auto dest: Acts_type [THEN subsetD])
done
lemma stable_localTo_stable2:
"⟦F ∈ stable({s ∈ state. P(f(s), g(s))}); G ∈ preserves(f); G ∈ preserves(g)⟧
⟹ F ⊔ G ∈ stable({s ∈ state. P(f(s), g(s))})"
apply (auto dest: ActsD preserves_into_program simp add: stable_def constrains_def)
apply (case_tac "act ∈ Acts (F) ")
apply auto
apply (drule preserves_imp_eq)
apply (drule_tac [3] preserves_imp_eq, auto)
done
lemma Increasing_preserves_Stable:
"⟦F ∈ stable({s ∈ state. <f(s), g(s)>:r}); G ∈ preserves(f);
F ⊔ G ∈ Increasing(A, r, g);
∀x ∈ state. f(x):A ∧ g(x):A⟧
⟹ F ⊔ G ∈ Stable({s ∈ state. <f(s), g(s)>:r})"
apply (auto simp add: stable_def Stable_def Increasing_def Constrains_def all_conj_distrib)
apply (simp_all add: constrains_type [THEN subsetD] preserves_type [THEN subsetD])
apply (blast intro: constrains_weaken)
apply (auto dest: ActsD simp add: preserves_def stable_def constrains_def ball_conj_distrib all_conj_distrib)
apply (erule_tac V = "∀act ∈ Acts (F). P (act)" for P in thin_rl)
apply (erule_tac V = "∀k∈A. ∀act ∈ Acts (F) . P (k,act)" for P in thin_rl)
apply (subgoal_tac "f (x) = f (xa) ")
apply (auto dest!: bspec)
done
lemma Constrains_UN_left:
"⟦∀x ∈ I. F ∈ A(x) Co B; F ∈ program⟧ ⟹ F:(⋃x ∈ I. A(x)) Co B"
by (unfold Constrains_def constrains_def, auto)
lemma stable_Join_Stable:
"⟦F ∈ stable({s ∈ state. P(f(s), g(s))});
∀k ∈ A. F ⊔ G ∈ Stable({s ∈ state. P(k, g(s))});
G ∈ preserves(f); ∀s ∈ state. f(s):A⟧
⟹ F ⊔ G ∈ Stable({s ∈ state. P(f(s), g(s))})"
unfolding stable_def Stable_def preserves_def
apply (rule_tac A = "(⋃k ∈ A. {s ∈ state. f(s)=k} ∩ {s ∈ state. P (f (s), g (s))})" in Constrains_weaken_L)
prefer 2 apply blast
apply (rule Constrains_UN_left, auto)
apply (rule_tac A = "{s ∈ state. f(s)=k} ∩ {s ∈ state. P (f (s), g (s))} ∩ {s ∈ state. P (k, g (s))}" and A' = "({s ∈ state. f(s)=k} ∪ {s ∈ state. P (f (s), g (s))}) ∩ {s ∈ state. P (k, g (s))}" in Constrains_weaken)
prefer 2 apply blast
prefer 2 apply blast
apply (rule Constrains_Int)
apply (rule constrains_imp_Constrains)
apply (auto simp add: constrains_type [THEN subsetD])
apply (blast intro: constrains_weaken)
apply (drule_tac x = k in spec)
apply (blast intro: constrains_weaken)
done
end