Theory Nat
section ‹Theory of the natural numbers: Peano's axioms, primitive recursion›
theory Nat
imports FOLP
begin
typedecl nat
instance nat :: "term" ..
axiomatization
Zero :: nat (‹0›) and
Suc :: "nat => nat" and
rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a" and
nrec :: "[nat, p, [nat, p] => p] => p" and
ninj :: "p => p" and
nneq :: "p => p" and
rec0 :: "p" and
recSuc :: "p"
where
induct: "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x))
|] ==> nrec(n,b,c):P(n)" and
Suc_inject: "p:Suc(m)=Suc(n) ==> ninj(p) : m=n" and
Suc_neq_0: "p:Suc(m)=0 ==> nneq(p) : R" and
rec_0: "rec0 : rec(0,a,f) = a" and
rec_Suc: "recSuc : rec(Suc(m), a, f) = f(m, rec(m,a,f))" and
nrecB0: "b: A ==> nrec(0,b,c) = b : A" and
nrecBSuc: "c(n,nrec(n,b,c)) : A ==> nrec(Suc(n),b,c) = c(n,nrec(n,b,c)) : A"
definition add :: "[nat, nat] => nat" (infixl ‹+› 60)
where "m + n == rec(m, n, %x y. Suc(y))"
subsection ‹Proofs about the natural numbers›
schematic_goal Suc_n_not_n: "?p : ~ (Suc(k) = k)"
apply (rule_tac n = k in induct)
apply (rule notI)
apply (erule Suc_neq_0)
apply (rule notI)
apply (erule notE)
apply (erule Suc_inject)
done
schematic_goal "?p : (k+m)+n = k+(m+n)"
apply (rule induct)
back
back
back
back
back
back
oops
schematic_goal add_0 [simp]: "?p : 0+n = n"
apply (unfold add_def)
apply (rule rec_0)
done
schematic_goal add_Suc [simp]: "?p : Suc(m)+n = Suc(m+n)"
apply (unfold add_def)
apply (rule rec_Suc)
done
schematic_goal Suc_cong: "p : x = y ⟹ ?p : Suc(x) = Suc(y)"
apply (erule subst)
apply (rule refl)
done
schematic_goal Plus_cong: "[| p : a = x; q: b = y |] ==> ?p : a + b = x + y"
apply (erule subst, erule subst, rule refl)
done
lemmas nat_congs = Suc_cong Plus_cong
ML ‹
val add_ss =
FOLP_ss addcongs @{thms nat_congs}
|> fold (addrew \<^context>) @{thms add_0 add_Suc}
›
schematic_goal add_assoc: "?p : (k+m)+n = k+(m+n)"
apply (rule_tac n = k in induct)
apply (tactic ‹SIMP_TAC \<^context> add_ss 1›)
apply (tactic ‹ASM_SIMP_TAC \<^context> add_ss 1›)
done
schematic_goal add_0_right: "?p : m+0 = m"
apply (rule_tac n = m in induct)
apply (tactic ‹SIMP_TAC \<^context> add_ss 1›)
apply (tactic ‹ASM_SIMP_TAC \<^context> add_ss 1›)
done
schematic_goal add_Suc_right: "?p : m+Suc(n) = Suc(m+n)"
apply (rule_tac n = m in induct)
apply (tactic ‹ALLGOALS (ASM_SIMP_TAC \<^context> add_ss)›)
done
end