Large-Scale Data Processing and Optimisation (2025-2026 Michaelmas Term)
|
OverviewThis module provides an introduction to large-scale data
processing, optimisation, and the impact on computer system's architecture.
Large-scale distributed applications with high volume data processing such as
training of machine learning will grow ever more in importance. Supporting the
design and implementation of robust, secure, and heterogeneous large-scale
distributed systems is essential. To deal with distributed systems with a large
and complex parameter space, tuning and optimising computer systems is becoming
an important and complex task, which also deals with the characteristics of
input data and algorithms used in the applications. Algorithm designers are
often unaware of the constraints imposed by systems and the best way to consider
these when designing algorithms with massive volume of data. On the other hand,
computer systems often miss advances in algorithm design that can be used to cut
down processing time and scale up systems in terms of the size of the problem
they can address. Integrating machine learning approaches (e.g. Bayesian
Optimisation, Reinforcement Learning) for system optimisation will also be
explored in this course.
Module Structure
Schedule and Reading ListAll the sessions will be in the class room (FW26). We will meet every Wednesday (from October 15 to December 3) in 2025. The time slot is 10:00-12:00.1 2025/10/15 Session 1: Introduction to Large-Scale Data Processing and Optimisation
2025/10/22 Session 2: Data flow programming
1. Yuan Yu, Michael Isard, D. Fetterly, M. Budiu, U.
Erlingsson, P.K. Gunda, J. Currey:
2. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, I. Stoica:
Noria: dynamic, partially-stateful data-flowfor high-performance web applications, OSDI 2018. 4. J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, OSDI, 2004. 5. Derek Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy and Steven Hand:Ciel: a universal execution engine for distributed data-flow computing, NSDI 2011.
6. Naiad
Frank McSherry's Talk on Differential Dataflow is
here. 7. P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini: Incoop: MapReduce for incremental computation, ACM SOCC, 2011. 8. M. Abadi et al. Tensorflow: A system for large-scale machine learning. OSDI, 2016.8.1 M. Abadi et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, Preliminary White Paper, 2015. 8.2. M. Abadi, M. Isard and D.
Murray: A Computational
Model for TensorFlow - An Introduction, MAPL, 2017. 9. M. Looks et al.: Deep Learning with Dynamic Computation Graphs, ICLR, 2017.
14. S. Li, Y. Zhao, R. Varma, et. al: PyTorch Distributed: Experiences on Accelerating Data Parallel Training, VLDB, 2020. 15. T. Lévai, F. Németh, and G. Rétvári: Batchy Batch scheduling Data Flow Graphs with Service level Objective, NSDI, 2020. 16 . P. Barham, et al.: Pathways: Asynchronous Distributed Dataflow for ML, MLSys, 2022. 17 . L. Zheng, et al.: Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning, OSDI, 2022. 18 . H. Zhu, et al.: MSRL: Distributed Reinforcement Learning with Dataflow Fragments, USENIX_ATC, 2023. 2025/10/29 Session 3: Data Flow Programming Tutorial
2025/11/05 Session 4: Large-scale graph data processing and Search Space Optimisation
1. G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski: Pregel: A System for Large-Scale Graph Processing, SIGMOD, 2010. 2. Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, Z.Zhang: MadLINQ: large-scale distributed matrix computation for the cloud, EuroSys, 2012. 3. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. Hellerstein: Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, VLDB, 2012. 4.J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin: Powergraph: distributed graph-parallel computation on natural graphs. OSDI, 2012. 5. J. Shun and G. Blelloch: Ligra: A Lightweight Graph Processing Framework for Shared Memory, PPoPP, 2013. 6. J. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. Franklin, I. Stoica: GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI, 2014. 8. A. Kyrola and G. Blelloch: Graphchi: Large-scale graph computation on just a PC, OSDI, 2012. 9. A. Roy, I. Mihailovic, W. Zwaenepoel: X-Stream: Edge-Centric Graph Processing using Streaming Partitions, SOSP, 2013. 10. A. Roy, L. Bindschaedler, J. Malicevic and W. Zwaenepoel: Chaos: Scale-out Graph Processing from Secondary Storage , SOSP, 2015. 11. F. McSherry, M. Isard and D. Murray: Scalability! But at what COST? , HOTOS, 2015. 14. S. Hong, H. Chafi, E. Sedlar, f K.Olukotun: Green-Marl: A DSL for Easy and Efficient Graph Analysis, ASPLOS, 2012.15. D. Prountzos, R. Manevich, K. Pingali: Elixir: A System for Synthesizing Concurrent Graph Programs, OOPSLA, 2012. 19. Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, A. Aiken: A Distributed Multi-GPU System for Fast Graph Processing, VLDB, 2018.
27. J. Ansel et al. Opentuner: an extensible framework for program autotuning. PACT, 2014. 28. J. Ansel et al.: Petabricks: A language and compiler for algorithmic choice. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI, 2009. 29. O. Alipourfard et al.: CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics, NSDI, 2017.2025/11/12 Session 5: Probabilistic ProgrammingGuest lecture: Brooks Paige (University of College London) @11:00. Title: TBC. Abstract: TBC. Bio: TBD. Reading Club @10:00. 1. E. Bingham et al.: Pyro: Deep Universal Probabilistic Programming, Journal of Machine Learning Research, 2019. 2. D. Tran et al.: Edward: A library for probabilistic modeling, inference, and criticism, arXiv, 2017. 4. F. Wood, J. van de Meent, V. Mansinghka: A new approach to probabilistic programming inference, AISTATS, 2014. 5. B. Paige and F. Wood: A compilation target for probabilistic programming languages, ICML, 2014. 6. J. Ai et al.: HackPPL: a universal probabilistic programming language, MAPL, 2019. 7. V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-Tuners with Structured Bayesian Optimization, WWW, 2017. 9. W. Neiswanger et al.: ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language, Arxiv, 2019. 11. M. Balandat et al.: BOTORCH: Bayesian Optimization in PyTorch, Arxiv 2020. 14 . J. Shao, et al.: Tensor Program Optimization with Probabilistic Programs, NeurIPS, 2022. 16. Maraval, A. et al.: Sample-Efficient Optimisation with Probabilistic Transformer Surrogates, ArXiv, 2022. 17. J. Snoek, H. Larochelle, and R. Adams: Practical Bayesian Optimization of Machine Learning Algorithms, NIPS, 2012.
19. R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. Gonzalez, I. Stoica: Tune: A Research Platform for Distributed Model Selection and Training, ICML, 2018. 21. Z. Wang, C. Gehring, P. Kohli, and S. Jegelka: Batched Large-scale Bayesian Optimization in High-dimensional Spaces, AISTATS, 2018. 22. Grosnit et al.: High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning, arxiv, 2021. 25. C. Lin, J. Miano, and E. Dyer: Bayesian optimization for modular black-box systems with switching costs, UAI, 2021. 26. E. H. Lee, D. Eriksson, V. Perrone and M. Seeger: A Nonmyopic Approach to Cost-Constrained Bayesian Optimization, UAI, 2021. 27. G. Claret, et al.: Bayesian Inference using Data Flow Analysis, ESEC/FSE, 2013. 30. A. Lew, et al.: Probabilistic Programming with Stochastic Probabilities, PLDI, 2023. 2025/11/19 Session 6: Optimisations in Computer Systems
1.1 A. Mirhoseini et al.: Device Placement Optimization with Reinforcement Learning, ICML, 2017. 1.2. A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. Le and J. Dean: A Hierarchical Mode for Device Placement, ICLR, 2018. 2.1 A. Mirhoseini, A. Goldie, et al.: A graph placement methodology for fast chip design, Nature, 2021. 2.2 A. Mirhoseini, A. Goldie, et al.: Chip Placement with Deep Reinforcement Learning, ISPD, 2020. 3. R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, M. Alizadeh: Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, arXiv, 2019. 4. R. Marcus, P. Negi, Parimarjan, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil, and N. Tatbul: Neo: A Learned Query Optimizer, VLDB, 2019.
6. A. Pavlo et al.:
Self-Driving Database
Management Systems, CIDR, 2017. 8. A. Floratou et al.: Dhalion: self-regulating stream processing in Heron, VLDB, 2017. 9. G. Li, X. Zhou, S. Li, and B. Gao: Qtune: RL for DB query optimisation, VLDB, 2019.10. D Van Aken, A Pavlo, GJ Gordon, and B Zhang: Automatic database management system tuning through large-scale machine learning, SIGMOD, 2017. 12. D. Aken , D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Bilien, and A. Pavlo: An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems, VLDB, 2021. 13. Zhao, Y. et al.: TOD: GPU-accelerated Outlier Detection via Tensor Operations, VLDB, 2022. 16. Kraska, T., Alizadeh, M., Beutel, A., Chi, E.H., Ding, J., Kristo, A., Leclerc, G., Madden, S., Mao, H. and Nathan, V.: SageDB: A learned database system, CIDR, 2019. 19. D. Ha and J. Schmidhuber: World Models, arXiv, 2018 (https://worldmodels.github.io). 20. R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska: Bao: Learning to Steer Query Optimizers, VLDB, 2020.21 . E. Liang, Z. Wu, M. Luo, S. Mika, J. Gonzalez, and I. Stoica: RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem, NeurIPS, 2021. 28. J. Ansel et al. Opentuner: an extensible framework for program autotuning. PACT, 2014. 32. S. Cereda, S. Valladares, P. Cremonesi and S. Doni: CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic Tuning of IT Configurations Under Varying Workload Conditions, VLDB, 2021. 33. Z. Jia, et al.: Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization, OSDI, 2022. 34. J. Xing, et al.: Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance, MLSYS, 2022. 35. M. Lindauer, et al.: SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization, Journal of Machine Learning Research, JMLR, 2021. 37. M. Wagenländer, et al.: Tenplex: Dynamic Parallelism for Deep Learning using Parallelizable Tensor Collections, SOSP, 2024. 39. X. Miao, et al.: FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning, arXiv, 2024. 41. Y. Mei, et al.: Helix: Distributed Serving of Large Language Models via Max-Flow on Heterogeneous GPUs, arXiv, 2024. 42. J. Juravsky, et al.: Hydragen: High-Throughput LLM Inference with Shared Prefixes, arXiv, 2024. 43. H. Zhang, et al.: LLMCompass: Enabling Efficient Hardware Design for Large Language Model Inference, ISCA, 2024. 45. J. Cheng, et al.: A Dataflow Compiler for Efficient LLM Inference using Custom Microscaling Formats, arXiv, 2023. 46. Y. Zhong, et al.: DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving, OSDI, 2024. 47. W. Kwon, et al.: Efficient Memory Management for Large Language Model Serving with PagedAttention, SOSP, 2023. 48. Y. Jiang, et al.: ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments, MLSYS, 2025. 2025/11/26 Session 7: Optimisations in ML Compiler
1. Trofin, M. et al.: MLGO: a Machine Learning Guided Compiler Optimizations Framework, ArXiv, 2021. 2. He, G., Parker, S., Yoneki, E.: X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs Transformation, MLSys, 2023. 3. Ma, L. et al.: Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks, OSDI, 2020. 4. Zheng, L. et al.: EinNet: Optimizing Tensor Programs with Derivation-Based Transformations, OSDI, 2023. 5. Nakandala, S. et al.: A Tensor Compiler for Unified Machine Learning Prediction Serving, OSDI, 2020. 6. Ding, Y. et al.: Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs, ASPLOS, 2023.
8. T. Chen, T. Moreau, Z. Jiang,
L. Zheng, S. Jiao, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze, C.
Guestrin, and A. Krishnamurthy:
TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning, OSDI, 2018. 9. T. Chen, T. Moreau, Z. Jiang,
L. Zheng, S. Jiao, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze, C.
Guestrin, and A. Krishnamurthy:
TVM: End-to-End Compilation
Stack for Deep Learning, SysML, 2017. 12. KH. Wang, J. Zhai, M. Gao, Z. Ma, S. Tang, L. Zheng, Y. Li, K. Rong, Y. Chen, and Z. Jia: PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections, ODSI, 2021. 13. A. Qiao, S. K. Choe, S. Subramanya, W. Neiswanger, Q. Ho, H. Zhang, G. R. Ganger, E. Xing: Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning, OSDI, 2021. 14. Y. Yang, et al.: Equality Saturation for Tensor Graph Superoptimization, MLSys, 2021. 15. L. Zheng, et al.: TenSet: A Large-scale Program Performance Dataset for Learned Tensor Compilers, NeurIPS, 2021. 17. R. Senanayake, et al.: A sparse iteration space transformation framework for sparse tensor algebra, OOPSLA, 2020. 18. L. Zheng, et al.: Ansor : Generating High-Performance Tensor Programs for Deep Learning, OSDI, 2020. 20. S. Zheng, et al.: FlexTensor: An Automatic Schedule Exploration and Optimization Framework for Tensor Computation on Heterogeneous System, ASPLOS, 2020. 24. A. Paliwal et al.: REGAL: Transfer Learning For Fast Optimization of Computation Graphs, arxiv, 2019. 25. F. Kjolstad, et al.: The tensor algebra compiler, OOPSLA, 2017. 26. C. Cummins, et al.: Meta Large Language Model Compiler: Foundation Models of Compiler Optimization, Meta, 2024. 27. J. Magalhães, et al.: C2taco: Lifting tensor code to taco, GPCE, 2023. 28. C. Hvarfner, et al.: Vanilla Bayesian Optimization Performs Great in High Dimensions, PMLR, 2024. 29. D. Eriksson, et al.: Scalable Global Optimization via Local Bayesian Optimization, NeurIPS, 2019. 30. Y. Wu, et al.: Swift: Compiled Inference for Probabilistic Programming Languages, IJCAI, 2016. Optimisation in Computer System: Additional Reference Papaers.
2025/12/03 Session 8: Presentation of Open Source Project Study Wrap-up Discussion
Coursework 1 (Reading Club)The reading club will require you to read between 1
and 3 papers every week. You need to fill out simple review_log
(MS word format,
text
format) prior to each session and email me by a day before - Tuesday (noon). The minimum requirement of review_log is one per session, but
you can read as many as you want and fill the review_log for each paper you
read. review_log is not marked but 'tick'.
Coursework 2 (Reports)The following three reports are required, which could be extended from the reading assignment of the reading club or a different one within the scope of data centric networking.
The report 1 should be handed in by November 14, 2025 - 16:00 and the report 2 by December 12, 2025 - 16:00 . The report 3 by January 20, 2026 - 16:00 - (Try to finish the mini project by the end of 2025!). AssessmentThe final grade for the course will be provided as a letter grade or percentage and the assessment will consist of two parts:
Open Source ProjectsSee the candidates of Open Source Projects in data centric networking. The list is not exhausted. If you take anything other than the one in the list, please discuss with me. The purpose of this assignment is to understand the prototype of the proposed architecture, algorithms, and systems through running an actual prototype and present/explain to the other people how the prototype runs, any additional work you have done including your own applications and setup process of the prototype. This experience will give you better understanding of the project. These Open Source Projects come with a set of published papers and you should be able to examine your interests in the paper through running the prototype. Some projects are rather large and may require extensive environment and time; make sure you are able to complete this assignment. How to Read/Review a PaperThe following papers aid how to read/review a paper.
Further supplement: see ‘how to read/review a paper’ section in Advanced Topics in Computer Systems by Steven Hand. PresentationsPresentations should be about 15-20 minutes long, where you need to cover the following aspects.
The following document aids in presenting a review.
How to write a survey paperA survey paper provides the readers with an exposition of existing work that is comprehensive and organized. It must expose relevant details associated in the surveying area, but it is important to keep a consistent level of details and to avoid simply listing the different works. Thus a good survey paper should demonstrate a summary of recent research results in a novel way that integrates and adds understanding to work in the field. For example, you can take an approach by classifying the existing literature in your own way; develop a perspective on the area, and evaluate trends. Thus, after defining the scope of your survey, 1) classify and organize the trend, 2) critical evaluation of approaches (pros/cons), and 3) add your analysis or explanation (e.g. table, figure). Also adding reference and pointer to further in-depth information is important (summary from Rich Wolski’s note). Papers for OS Principles (Distributed Storage and Deterministic Parallelism)
3. F. Chang et al: BigTable: A Distributed Storage System for Structured Data, USENIX OSDI 2006. 4. G. DeCandia et al: Dynamo: Amazon's Highly Available Key-value Store, ACM SOSP 2007.
6. A. Aviram, et al: Efficient System-Enforced Determistic Parallelism, USENIX OSDI 2010. 7. T. Liu et al: Dthreads: Efficient and Determistic Multithreading, ACM SOSP 2011. Contact EmailPlease email to eiko.yoneki@cl.cam.ac.uk for the question. |