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Large-scale Data Processing and Optimisation

Overview

Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited 
number of machines in single distributed storage 
 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system 
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)
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Technologies supporting Cluster Computing 

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System 

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis, 

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)
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Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo, 
Cassandra, Redis, Mongo, 

Spanner…

Logging System/Distributed 
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Tensorflow, Ray, Flumejava…

Streaming 
Processing

Storm, SEEP, Naiad, 
Spark Streaming, Flink, 

Milwheel, Google 
Dataflow...

Graph Processing
Pregel, Giraph, 

GraphLab, PowerGraph, 
(Dato), GraphX,          

X-Stream...

Query Language
Pig, Hive, SparkSQL,  

DryadLINQ…

Machine Learning
Rllib, Caffe, Keras,

Torch, MLlib…
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Data Flow Programming 

 Non-standard programming models
 Powerful abstraction: mapping computation into 

dataflow graphs

Function f(x, y, z) = x* y + z
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MapReduce Programming 

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel 
 Results from map operation get synthesised into a result of 

original problem (reduce)

6



4

Data Flow Programming Examples 

 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…
 e.g. ML compiler: computation graphs 

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark…
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Data Flow Programming’s Usefulness for ML
 Data flow programming holds the key to natural, modular, 

streamlined ML specification
 Same language for layer, network, and integration 

specification
 For complex NN classes, RL with complex reward, gated networks, 

attention/transformers, mix of NN and data processing

 Same language for ML algorithmics and compiler design
 Well-established analysis and compilation techniques 

integrated within existing ML compilers (e.g. MLIR)
 MLIR (Multi-Level Intermediate Representation) is intended to be 

a hybrid IR which can support multiple different requirements in a 
unified infrastructure (https://mlir.llvm.org/)
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Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 
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Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often 
based on exploring graph structure leading to a large access rate to 
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)
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Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce) 
 Not every graph algorithm is parallelisable (interdependent 

computation) 
 Not much data access locality
 High data access to computation ratio
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Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model  

Pregel (Google), Giraph (Apache), Graphlab, 
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  
NAIAD (MSR), TensorFlow…
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Bulk synchronous parallel: Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…
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Are Large Clusters and Many cores Efficient?   
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters
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Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 
communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 
communication)
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Data Processing Paradigm Change
 Emergence of modern Neural Networks Applications
 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware
 Traditional dataflow programming does not deal with mathematical 

objects (no deep learning back then), ML application control flow 
requires to be numerically differentiable (i.e. TensorFlow) 

 Now LLM, Agentic systems...

Image Classification            Reinforcement Learning

16



9

Tuning Computer Systems is Complex

 Complex and High Dimension Parameter Space 
 Expensive Objective Functions
 Hand-crafted solutions impractical, often left static or configured 

through extensive offline analysis
 Not well-tuned system’s performance does not scale
 Necessity of scalable Auto-tuning    
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LLM Inference on heterogeneous GPU clusters 

 Find optimal hardware 
configuration for
lowest latency while      
guaranteeing a specific      
level of system  
performance (minimum 
throughput)

 Outer layer: GPU group
 Inner Layer: Linear 

Solver 

 Constrained Throughput-Latency Co-Optimisation

18



10

LLM Optimisation  (from algorithms to system resources)
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 Smaller LLMs
Quantization
Distillation
Low-Rank Adaptation
Weight Sharing
Sparse Matrices
Layer Dropping
Knowledge Transfer
Embedding Compression
Mixed Sparsity

 Inference Optimisation
KV-Caching
Speculative Decoding
Flash Attention
Paged Attention
Batch Inference
Early Exit Decoding
Parallel Decoding
Mixed Precision Inference
Quantized Kernels
Tensor Parallelism
Pipeline Parallelism
Sequence Parallelism
Graph Optimisation 

Challenging: High Performance Computer Systems
 How do we improve performance:

 Manual tuning
 Auto-tuning 

 What is performance? – objective function of optimisation 
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)
 Large number of parameters
 Evaluation is slow and expensive 

 What is Optimisation Model? 
 Short-term dynamic control (e.g. stream processing: distinct workload or 

dynamic workload)
 Combinatorial optimisation (e.g. indexing DB, device assignment) 

 Integrate power of Hardware (Accelerator, GPU..)  

Many systems problems are combinatorial in nature
20
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Search Parameter Space

Bayesian 
Optimisation

Genetic 
algorithm /
Simulated 
annealing

Random Search

High overheadSlight overheadNo overhead

Low #evaluation
Medium-high 
#evaluationHigh #evaluation
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Hill Climbing

Auto-tuning Complex Systems

 Grid search θ ∈ [1, 2, 3, …]

 Evolutionary approaches (e.g.                )

 Hill-climbing (e.g.               )

 Bayesian optimisation (e.g.           )

1000s of evaluations 
of objective function

Computation more 
expensive

Fewer samples

 Many dimensions 
 Expensive objective function
 Hand-crafted solutions impractical 

(e.g. extensive offline analysis)

Blackbox Optimisation
 can surpass human 

expert-level tuning
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Optimisation: Iterative Operation

 Common to use an iterative global search algorithm for 
optimisation problem

 e.g. Bayesian optimisation algorithm that is capable of 
simultaneously approximating the target function that is 
being optimised while optimising it.

 Automated machine learning (AutoML) algorithms being used 
to choose an algorithm, an algorithm and hyperparameters, 
or data preparation, algorithm and hyperparameters, with 
very little user intervention 
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Machine Learning and Optimisation 

 Function Optimisation
 Find the set of inputs to a target objective function that result in the 

minimum or maximum of the function

 Function Approximation: 
 Generalise from specific examples to a reusable mapping function for 

making predictions on new examples

 ML can be described as function approximation as approximating 
the unknown underlying function that maps examples of inputs to 
outputs in order to make predictions on new data

 Function approximation often uses function optimisation

 At the core of many ML algorithms is an optimisation algorithm!
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Examples of Machine Learning Algorithms…
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Machine Learning and Optimisation 

 Process of working through a predictive modeling involves 
optimisation at multiple steps: 

 Choosing hyperparameters of a model
 Choosing transformation to apply to the data prior to modeling
 Choosing modeling pipeline to use as the final model

 Convert Optimisation Process to Learning
 A numeric quantity must be predicted in the case of a regression 

problem, whereas a class label must be predicted in the case of a 
classification problem…

 Exploit ML based optimisation practically

26
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Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

① Find promising point (high performance value in the 
model)

② Evaluate the objective function at that point
③ Update the model to reflect this new measurement

27

Pros:
✓ Data efficient: converges in few iterations
✓ Able to deal with noisy observations

Cons:
✗ In many dimensions, model does not     

converge to the objective function 

Surrogate Model in Bayesian Optimisation

 Structural information (e.g. DAG model) improves Optimisation.
28
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Structured Bayesian Optimisation (SBO) 

✓ Better convergence
✓ Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
29

Probabilistic Model

 Probabilistic models incorporate random variables and 
probability distributions into the model 
 Deterministic model gives a single possible outcome 
 Probabilistic model gives a probability distribution

 Used for various probabilistic logic inference (e.g. MCMC-
based inference, Bayesian inference…)

Tutorial: Session 5 – Guest Lecture by Brooks Paige

30
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Probabilistic Programming: Probabilistic C++

Pyro     Stheno

Probabilistic C++

31

Example: JVM Garbage Collection

 Cassandra's garbage collection

 Minimise 99th percentile latency of Cassandra

Cassandra

JVM
Garbage collection flags:

● Young generation size
● Survivor ratio
● Max tenuring threshold

32
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Performance Improvement from Structure 
1. User-given probabilistic model structured in semi-parametric 

model using Directed Acyclic Graph 

Tune three JVM parameters of database        
(Cassandra) to minimise latency

2. Sub-Optimisation in numerical optimisation
 Exploit structure to split optimisation problem into smaller 

optimisations (e.g. nested optimisation)
 Provide decomposition mechanisms

99th Percentile 
LatencyGC Flags GC Rate

Model

GC Average 
Duration Model

Latency 
Model

Average 
GC duration

GC Rate
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Semi-parametric Model

 Easy to use and 
well suited to SBO

 Understand 
general trend of 
Objective function

 High precision in 
region of optimum 
for finding highest 
performance

Too restrictive

Too generic

Just right
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DAG model in BOAT
struct CassandraModel : public DAGModel<CassandraModel> {

  void model(int ygs, int sr, int mtt){
    // Calculate the size of the heap regions
    double es = ygs * sr / (sr + 2.0);// Eden space's size
    double ss = ygs / (sr + 2.0);     // Survivor space's size

    // Define the dataflow between semi-parametric models
    double rate =     output("rate", rate_model, es);
    double duration = output("duration", duration_model,
                             es, ss, mtt);
    double latency =  output("latency", latency_model,
                             rate, duration, es, ss, mtt);
  }

  ProbEngine<GCRateModel> rate_model;
  ProbEngine<GCDurationModel> duration_model;
  ProbEngine<LatencyModel> latency_model;
};
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GC Rate Semi-parametric model

36
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Evaluation: Garbage collection

37

Evaluation: Garbage collection
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Evaluation: Neural networks (SGD) scheduling

Communication
modelMachine 

models
tm1 tm2 tm3 tm4

max Predicted 
time

Load balancing, worker 
allocation over 10 machines = 
~30 parameters

Use TensorFlow
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Evaluation: Neural network scheduling

Default configuration: 9.82s
OpenTuner: 8.71s
BOAT: 4.31s

Existing systems don’t converge!

40
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Further Bayesian Optimisation…  

41

 BO overview/Tutorial 
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_Archambeau.pdf 
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_adams.pdf 
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_gonzalez.pdf 

 BO tool with structural information 
 Capable to embed structural information to surrogate model (e.g. BoTorch)

 Papers 
 Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A 

Review of Bayesian Optimization. Proceedings of the IEEE 104(1):148-175, 2016.
 Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine 

Learning. CIFAR NCAP Summer School.
 Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and 

Simulation Optimization. INFORMS Annual Meeting.

Auto-Tuning
 Manual Tuning

 User to learn expert knowledge and not transferable
 e.g. Ottertune (manually selects limited number of parameters then use BO)

 Automated Tuning 
 Divide-and-diverge sampling to explore the configuration space 
 For example, BO uses Gaussian processes, but it struggles to make accurate 

performance predictions because of high dimensionality

Generic Auto-Tuning with DAG models

 Use of DAG models for surrogate model, which mitigates the curse of 
dimensionality while also retaining all configurable variables 

 Exploit data analysis to identify parameter dependencies 
 Automatic building of DAG models: use of Bayesian Networks
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Automation of DAG model building

 System’s inherent 
structure builds 
dependency graphs

 Decomposability allows 
tuning a larger number 
of parameters, 
providing interpretable 
optimisation 
suggestions

 Natural way to encode 
expert knowledge in its 
graph
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Bayesian Optimisation not for Combinatorial Model

LLVM Compiler pass list optimisation
(BaysOpt vs Random Search)

R
un

 T
im

e 
(s

)

Iteration
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Reinforcement Learning in Computer Systems
 Agent interacts with Dynamic environment
 Goal: Maximise expectations over rewards in agent’s lifetime
 Notion of Planning/Control, not single static configuration

What makes RL different from other ML paradigms?
 There is no supervisor, only a reward signal
 Feedback is delayed, not instantaneous
 Time really matters (sequential)
 Agent’s actions affect the subsequent data it receives

Practical Consideration: 
 Action spaces do not scale
 Exploration in production system not a good idea
 Simulations can oversimplify problem (Expensive to build)
 Online steps take too long
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Reinforcement Learning for Optimisation 
Many problems in systems are sequential Decision Making 
and/or Combinatorial Problems on graph data

 Compiler Optimisation
 Input: XLA/HLO graph
 Objective: Scheduling fusion of ops

 Chip placement
 Input: Chip netlist graph
 Objective: placement on 2D of ND grids

 Datacentre resource allocation
 Input: job - workload graph
 Objective: Placement on datacentre cells and racks

 Packet Classification
 Input: network packets
 Objective: minimise the classification time and memory footprint

 Network congestion control with multiple connections
 Wide range of signals to make decisions (e.g., VM allocation)
 Database: Query optimiser, Dynamic indexing…

46



24

A brief history of Deep RL software
1. Gen (2014-16): Loose research scripts (e.g. DQN), high expertise 
required, only specific simulators

2. Gen (2016-17): OpenAI gym gives unified task interface, 
reference implementations (e.g. OpenAI baselines)
Good results on some environments (e.g. game), difficult to retool to 
new domains and execution modes
Abstractions/Libraries: Not fully reusable, customised towards game 
simulators, execution coupled with algorithms
High implementation risk: Lack of systematic testing, performance 
strongly impacted by noisy heuristics

3. Gen (2017-): Generic declarative APIs, distributed abstractions 
(Ray Rllib…Coach, Tunic?), some standard flavours emerge

47

RLlib (UC Berkeley) Architecture

48
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RLgraph: Modular Dataflow Composition

 ... is a programming model to design 
and execute RL algorithms across 
execution paradigms

 ... generates incrementally testable, 
transparently configurable code 
through a staged build process

49

RLGraph: Separate Local and Distributed Execution 
 High performance RL computation graphs for RL with different 

distributed backends

50
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Performance on Apex (Distributed Q-Learning)

Distributed sample performance               Time to solve Pong (Score ~21)
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ML Compiler Challenges

 Fast tensor operation capable compilers: Complex optimisation 
plays a crucial role for LLM processing

 Use of ML to optimise ML Compiler
 Superoptimisation: Deal with massive parameter space
 use of Equality Saturation (ES), MCTS
 use of reinforcement Learning 

 Many compiler optimisations are phase ordering problem 

 Challenge to bridge the gap between ML models and HW
 Existing ML Compiler

 Apache TVM
 NVIDIA TensorRT - CuDNN
 ONNX runtime
 LLVM
 Google MLIR

 TensorFlow XLA
 Meta Glow
 PyTorch nvFuser
 INTEL pLAIDml
 Open VINO

52
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ML Compiler Optimisation

Hardware Primitives

Runtime Operations/Scheduling  

Computational Graphs (e.g. ONNX)

Tensor Layout (Graph/Tile)

AI Applications

ML Compiler Layer

O
p

ti
m
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+ Hyper Parameter Tuning

TensorFlow, MXNet, and PyTorch

CUDA Assembly Code Optimisation

See ML Compiler Tutorial: https://mlc.ai/summer22/schedule
Also Survey:  https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9222299
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Optimising DNN Computation with Graph Substitutions
 TASO (SOSP, 2019): Performance improvement by transformation of 

computation graphs  
 PET (OSDI, 2021): Optimizing Tensor Programs with Partially 

Equivalent Transformations and Automated Corrections
 Equality Saturation for Tensor Graph Superoptimization (MLSys 2021)
 X-RLflow: Graph Reinforcement Learning for Neural Network Subgraph 

Transformation (MLSys 2023)
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TVM: Deep Learning Compiler

 TVM: end-to-end deep learning compilers
 Operator/expression-level optimisation operates on Tensor 

Operation Abstraction(TIR) 
 Core: Optimising programs through a sequence of transformation
 Automatic optimisation
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CuAsmRL: Optimising CUDA GPU SASS schedules
 Optimising GPU SASS schedules via Deep RL

 Search space:
 Original: full permutation of instructions; computationally intractable
 Pruning: only global read and write memory instructions, e.g. LDG, STG etc.

 Mutation:
 Randomly select an instruction and reorder an instruction above or below

 Feedback signal: 
 Assemble the mutated SASS and run on GPUs
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CuAsmRL: Optimising CUDA GPU SASS schedules
 Apply all possible high-level 

optimisation by reusing compilation 
pipeline

 Search for optimal schedules by 
playing the assembly game

 Each memory instruction can be swapped 
with the instruction up and down

 Positive reward is given if the action reduce 
runtime

 Iterative optimisation
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CuAsmRL: Optimising CUDA GPU SASS schedules
 Kernel Throughput
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Chip Placement with Reinforcement Learning
 A. Mirhoseini and A. Goldie: A graph placement methodology for 

fast chip design, Nature, 2021. 
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Reinforcement Learning for Optimisation 
Many problems in systems are sequential decision making 
and/or combinatorial problems

 Compiler Optimisation
 Chip placement
 Datacentre resource allocation
 Network congestion control with multiple connections

 Wide range of signals to make decisions (e.g., VM allocation)

 Database: Query optimiser, Dynamic indexing…

 Emerging Agentic RL…
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Summary: Massive Data Processing and Optimisation

Dataflow is key element used in optimisation 

Parameter space is complex, large and dynamic/combinatorial

 Systems are nonlinear and difficult to model manually  Exploit ML
 Reinforcement Learning to optimise dynamic combinatorial problem
 Key concept behind is Dataflow (~=Computational Graph) structural 

transformation/Decomposition  

Exploit structural information for model decomposition to accelerate 
optimisation process and/or transform the structure

Bayesian Optimisation and Reinforcement Learning are key 

Other ML algorithms would be potentially useful… 61

Course Schedule

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026

Session 1: Introduction 

Session 2: Data Flow Programming: Map/Reduce to TensorFlow to ML

Session 3: Hands-on Tutorial: Data Flow Programing 

Session 4: Large-scale Graph Data Processing / Search Space

Session 5: Probabilistic Programming + BO : Guest lecture (Brooks Paige)

Session 6: Optimisation of Computer Systems  

Session 7: Optimisation in ML Compiler (Superoptimisation…)

Session 8: Project Study Presentation 62


