Large-scale Data Processing and Optimisation

Overview

Eiko Yoneki

/\/ University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

» Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

- Parallelisable data distribution and processing is key

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

» Scale-out: add more nodes to system (e.g. Amazon EC2)

Technologies supporting Cluster Computing

Distributed infrastructure
= Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File System
(HDFS), Google File System (GFS))

Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4])

Programming model
= Distributed processing (e.g. MapReduce)

Data Processing Stack

‘ Data Processi)gd-an\
4

Streami_:g uery Language Machine Learning r:ph Fl'rgt_:essi 9
Stwrmroggzlil Ngai?d | [[RING SEafmesh 15, Rllib, Caffe, Kegas, Gra ot Do raph
WY ! ! DryadLINQ.. orch A P ph,

Spark Streaming, Flink, (Dato), GraphX,

Milwheel, Google Execution Endgine X-Stream...
Dataflow... MapReduce, §park, Tensorfloy, Ray, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack... 4

Data Flow Programming

= Non-standard programming models
= Powerful abstraction: mapping computation into

dataflow graphs

X

e

Function f(x, y, z) = x*y + z

out

MapReduce Programming

Target problem needs to be parallelisable
Split into a set of smaller code (map)
Next small piece of code executed in parallel

Results from map operation get synthesised into a result of
original problem (reduce)

Input data

=

Reduce(]

QOutput data

Data Flow Programming Examples

= Data (flow) parallel programming

= e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...
= e.g. ML compiler: computation graphs

MapReduce: DAG (Directed Acyclic Graph) Flow
Hadoop based: Dryad/Spark...

32 |-14)51| ..
10| -2 |24 ..

Two-Stage fixed dataflow

More flexible dataflow model

Data Flow Programming’s Usefulness for ML

= Data flow programming holds the key to natural, modular,
streamlined ML specification

= Same language for layer, network, and integration

specification
= For complex NN classes, RL with complex reward, gated networks,
attention/transformers, mix of NN and data processing

= Same language for ML algorithmics and compiler design

= Well-established analysis and compilation techniques
integrated within existing ML compilers (e.g. MLIR)

= MLIR (Multi-Level Intermediate Representation) is intended to be
a hybrid IR which can support multiple different requirements in a

unified infrastructure (https://mlir.llvm.org/) .

7o | (05 ncurons(700T -
g M links) requires 100s 45

GB memory

Bipartite graph of

phrases in
documents (g
- Web 1.4B
Protein Interactions emedia data pages(6.6B
[genomebiology.com] "\‘ 6?‘“ links)

Graph Computation Challenges

Graph algorithms (BFS, Shortest path)
Query on connectivity (Triangle, Pattern)
Structure (Community, Centrality)

ML & Optimisation (Regression, SGD)

Wb

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

= Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

»= High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to

computation ratio 0

Data-Parallel vs. Graph-Parallel

= Data-Parallel for all? Graph-Parallel is hard!
= Data-Parallel (sort/search - randomly split data to feed MapReduce)

= Not every graph algorithm is parallelisable (interdependent
computation)

= Not much data access locality
= High data access to computation ratio

Data-Parallel Graph-Parallel

Table /

L B¢ Result

Dependency Graph .

i

11

Graph-Parallel

= Graph-Parallel (Graph Specific Data Parallel)

* Vertex-based iterative computation model
= Use of iterative Bulk Synchronous Parallel Model
> Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

= Optimisation over data parallel
=» GraphX/Spark (U.C. Berkeley)

= Data-flow programming — more general framework
= NAIAD (MSR), TensorFlow...

12

Bulk synchronous parallel: Example

* Finding the largest value in a connected graph

Local Computation -'r:
-

. - Message
Communication

‘

Local Computation

‘

Communication

‘

13

Are Large Clusters and Many cores Efficient?

»= Brute force approach really efficiently works?
= Increase of humber of cores (including use of GPU)

= Increase of nodes in clusters
Big Iron

Large Cluster

./

DO A

HPC/Graph500 benchmarks (June 2014)

b Avery Ching,
A billion edges isn’t cool. Facebook
You know what’s cool? @Strata, 2/13/2014

Graph Edges Hardware

-
EEEE Y

A TRILLION edges.

1 trillion Tsubame

A

1 trillion Cray

1 trillion Blue Gene

1 trillion NEC

Do we really need large clusters?
= Laptops are sufficient?
[Twenty pagerank iterations]
System cores twitter_rv uk_2007_05 Fixed-point iteration:
Spark 128 857s 1759s All vertices active in
Giraph 128 596s 1235s each iteration
GraphLab 128 QagsP 833s (50% computation, 50%
GraphX 128 419s Cae2sD \ communication)
» Single thread 1 C3o0s Ces1s
[Label propagation to fixed-point (graph connectivity)]
| System | cores | twitter_rv | uk_2007_05
[Spark | 128 1784s| 8000s+ Traversal: Search
[Giraph | 128| 200s | 8000s+ proceeds in a frontler
[GraphLab | 128] 2425 714s (90% computation, 10%
[Graphx | 128] 2515 800s communication)
B [Single thread | 1] C4s53sh Ca17s
from Frank McSherry HotOS 2015 15

airplane
automobile
bird

cat

deer

dog

trog

horse

ship

truck

EEET . A
e NeETe
EmE N O
FEOHSEEE P
L R R
BT e O
LEERRULAEE
ERELONEEE
e B .
FL R Tl

Image Classification

Data Processing Paradigm Change

Reinforcement Learning

= Emergence of modern Neural Networks Applications
» Practicalities of training Neural Networks
= Leveraging heterogeneous hardware

* Traditional dataflow programming does not deal with mathematical
objects (no deep learning back then), ML application control flow
requires to be numerically differentiable (i.e. TensorFlow)

= Now LLM, Agentic systems...

16

Tuning Computer Systems is Complex

Expensive Objective Functions

through extensive offline analysis

- Necessity of scalable Auto-tuning

Complex and High Dimension Parameter Space
Hand-crafted solutions impractical, often left static or configured

Not well-tuned system’s performance does not scale

Deep Learning = One or more beefy = Parameter Architecture: exploit
Cluster Workload - SRR GPUs both Data Parallelism and Model
bl foe Parallelism (by Google)
Management oSLe ZLeote x"m‘;z;::S:::;i,ﬁf
ofe o ® 0L gL @l g -Actvatinfun Po baramecer Sorver = W= AW
‘! | | Festeacion: lscaon 7 DD[:][:][:]DC]
Scheduler { \\
] (H) Model
' 5 % SoC/ASIC SW/HW Co-Design Rc,\,,,
ICt .
[] “\6(\" = A @ é
3 17
e N

LLM Inference on heterogeneous GPU clusters

= Constrained Throughput-Latency Co-Optimisation ., O@

* Find optimal hardware
configuration for

lowest latency while
guaranteeing a specific
level of system
performance (minimum
throughput)

= Quter layer: GPU group

» Inner Layer: Linear
Solver

Input

GPU
Inventory

Evaluate Config

Island Config

k_slots

Bayesian

- I Outer Loop.
Optimization

~—Best rho_max

Latency (rho_max)

Optimal Schedule
Found

Workload
Trace

Inner Loop: Linear
Solver

main_direct

18

LLM Optimisation (from algorithms to system resources)

= Smaller LLMs

Quantization

Distillation

Low-Rank Adaptation
Weight Sharing

Sparse Matrices

Layer Dropping
Knowledge Transfer
Embedding Compression
Mixed Sparsity

® |nference Optimisation

KV-Caching

Speculative Decoding
Flash Attention

Paged Attention

Batch Inference

Early Exit Decoding
Parallel Decoding

Mixed Precision Inference
Quantized Kernels
Tensor Parallelism
Pipeline Parallelism
Sequence Parallelism
Graph Optimisation 19

Challenging: High Performance Computer Systems

= Manual tuning
= Auto-tuning

How do we improve performance:

= What is performance? - objective function of optimisation

= Resource usage (e.g. time, power)

Computational properties (e.g. accuracy, fairness, latency)
Large number of parameters

Evaluation is slow and expensive

What is Optimisation Model?

= Short-term dynamic control (e.g. stream processing: distinct workload or

dynamic workload)

= Combinatorial optimisation (e.g. indexing DB, device assignment)

Integrate power of Hardware (Accelerator, GPU..)

[Many systems problems are combinatorial in nature]

20

10

Search Parameter Space

Random search: No risk of ‘getting stuck’ (=]
potentially many samples required Ry PetaBricks
Evolution strategies: Evaluate
permutations against fithess function SPEARMINT
Hill Climbin @W Bayes Opt: Sample efficient, requires
g penjuner continuous function, some configuration
Genetic
Random Search algorithm / Bayesian
Simulated Optimisation
annealing
No overhead Slight overhead High overhead
Medium-high
High #evaluation #evaluation Low #evaluation

21

Auto-tuning Complex Systems

= Many dimensions

= Expensive objective function » Blackbox Optimisation

= Hand-crafted solutions impractical can surpass human
(e.g. extensive offline analysis) expert—lpevel tuning

Grid search 6 € [1, 2, 3, ...]
1000s of evaluations

of objective function

Evolutionary approaches (e.gfﬂ PetaBricks)

. . C tati
= Hill-climbing (e.g. @pen“umer‘) e)(()g]e%zi\?elon more
" Bayesian optimisation (e.g. SPEARMINT) Fewer samples

22

11

Optimisation: Iterative Operation

= Common to use an iterative global search algorithm for
optimisation problem

* e.g. Bayesian optimisation algorithm that is capable of
simultaneously approximating the target function that is
being optimised while optimising it.

» Automated machine learning (AutoML) algorithms being used
to choose an algorithm, an algorithm and hyperparameters,
or data preparation, algorithm and hyperparameters, with
very little user intervention

23

Machine Learning and Optimisation

= Function Optimisation

= Find the set of inputs to a target objective function that result in the
minimum or maximum of the function

= Function Approximation:

= Generalise from specific examples to a reusable mapping function for
making predictions on new examples

= ML can be described as function approximation as approximating
the unknown underlying function that maps examples of inputs to
outputs in order to make predictions on new data

= Function approximation often uses function optimisation

= At the core of many ML algorithms is an optimisation algorithm!

24

12

Examples of Machine Learning Algorithms...

Naive Bayes

Logistic Regression

\\

Random Forest

¢ re

) —

Regression Linear Reg

a gres:

Lasso Regression

K-Means Clustering

DBSCAN Algorithm

Unsupervised

S L S S S S S R SR S S S S S

Policy O

Learn the Model 25

]
Q-Learning]
]
)

Given the Model

Machine Learning and Optimisation

» Process of working through a predictive modeling involves
optimisation at multiple steps:

= Choosing hyperparameters of a model
= Choosing transformation to apply to the data prior to modeling
= Choosing modeling pipeline to use as the final model

= Convert Optimisation Process to Learning

= A numeric quantity must be predicted in the case of a regression
problem, whereas a class label must be predicted in the case of a
classification problem...

= Exploit ML based optimisation practically

26

Bayesian Optimisation

» Tteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model
= Data efficient: converges quickly

Input: Objective function f()

Input: Surrogate function initial distribution G)] @ [G . W .
Input: Acquisition function a() Configuration .| 12J Pau55|an PPrrfedlcted
I fori—1.2...do Space \ rocess erformance
.)
2: Sample point: x; < argmax, a(G . x) VY\\@
3: Evaluate new point: y, < f(x,) Objective " Performance
4: Update surrogate distribution: G < G | (x,,y) Function
5. end for
Pros:) -] . .
/ Data efficient: converges in few iterations (D Find promising point (high performance value in the
/ Able to deal with noisy observations model)
Cons: (2) Evaluate the objective function at that point
X In many dimensions, model does not (3@ Update the model to reflect this new measurement
converge to the objective function 27

Surrogate Model in Bayesian Optimisation

Table 2.1: Comparison of surrogate models for BO

Model Advantages Disadvantages
Parametric e Quickly fit long-distance e Require known structure of
models trends f

Gaussian pro- e Expressive

o Fitting is O(n?) in train-data

CESSes size

e Flexible e Continuous, non-hierarchical

configuration space only

Tree-Parzen e Fitting is O(n) in train-data e Less sample efficient than
estimators | size GP

e Categorical and hierarchieal

configuration space supported
Random e Computationally very cheap e Inaccurately extrapolates un-
forests certainty

e Categorical and hierarchical
configuration space supported

» Structural information (e.g. DAG model) improves Optimisation.

28

14

Structured Bayesian Optimisation (SBO)

Configuration | @

Space Program®

g

@

l | Gauss ‘
I

Probabilistic

Objective
Function

v Better convergence
v Use all measurements

BOAT: a framework to build BespOke Auto-Tuners

Predicted
Performance

@\@
\ Performance &

Runtime properties

Probabilistic Model written in
Probabilistic C++

Developer-specified,
model of performance
from observed
performance + arbitrary
runtime characteristics

29

Probabilistic Model

» Probabilistic models incorporate random variables and

probability distributions into the model

= Deterministic model gives a single possible outcome
= Probabilistic model gives a probability distribution
= Used for various probabilistic logic inference (e.g. MCMC-

based inference, Bayesian inference...)

Tutorial: Session 5 — Guest Lecture by Brooks Paige

30

15

Probabilistic Programming: Probabilistic C++

PL Al ML STATS

Pyro Stheno
Probabilistic C++
webChurch —
Figaro Ventur:%]rc%r‘wag l\‘zl,saer‘]C_C m
2010 et
HANSAI = I
Probjog Factorie JAGS
Blog
2000 IBAL
Prism WinBUGS
Discrete RV'’s Bounded
1990 Only Recursion
BUGS
Simula Prolog 31

Example: JVM Garbage Collection

= Cassandra's garbage collection

Cassandra

Garbage collection flags:
JVM e Young generation size
e Survivor ratio

e Max tenuring threshold

= Minimise 99th percentile latency of Cassandra

32

16

Performance Improvement from Structure

1. User-given probabilistic model structured in semi-parametric
model using Directed Acyclic Graph

GC Flags GC Rate
GC Average
Duration Model
Tune three JVM parameters of database
(Cassandra) to minimise latency

2. Sub-Optimisation in numerical optimisation

= Exploit structure to split optimisation problem into smaller
optimisations (e.g. nested optimisation)

= Provide decomposition mechanisms

99th Percentile
Latency

Latency
Model

Average
GC duration

33

Semi-parametric Model

= Easy to use and 3 }/ Too generic
well suited to SBO &, -- z -
£ g
= Understand 1 Too restrictive T
general trend of Lo oo w0 b oo 2000
Objective function

(a) Parametric (Linear regression)
4

(b) Non-parametric (Gaussian process)

= High precision in i Justright
. . - L1
region of optimum g,
for finding highest E T T
performance 1 |~ Model Observation
—— Predicted Time
7000 200
Vector size
(c) Semi-parametric (Combination) 34

17

x.n-
DAG model in BOAT
struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
double es = ygs * sr / (sr + 2.0);// Eden space's size
double ss = ygs / (sr + 2.0); // Survivor space's size
// Define the dataflow between semi-parametric models
double rate = output('rate”, rate_model, es);
double duration = output('duration”, duration_model,
es, ss, mtt);
double latency = output(“latency”, latency_model,
rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
s 35
0
'-.n..

GC Rate Semi-parametric model

struct GCRateModel : public SemiParametricModel<GCRateModel> {

GCRateModel() {
allocated_mbs_per_sec =
std: :uniform_real_distribution<>(©.0, 5000.0) (generator);
// set the GP parameters here

}

double parametric(double eden_size) const {
// Model the rate as inversely proportional to Eden's size
return allocated_mbs_per_sec / eden_size;

}

double allocated_mbs_per_sec;

1

36

18

Evaluation: Garbage collection

99th Percentile Latency (ms)

N
w

N
o

=
ul

=
o

w

o

Il Cassandra default
[Optimised

B D

YCSB core workload

37

Evaluation: Garbage collection

s)

N
o

Best 99th percentile latency (m

=
U

=
o

wn

(=]
o

—k— OpenTuner
—&— Spearmint

—J— Bespoke optimiser | |

10

15 20 25
Iteration

38

19

[
Evaluation: Neural networks (SGD) scheduling
® 0 0 Q Load balancing, worker
l allocation over 10 machines =

S S | S o ~30 parameters
i ® i _ ’ ’ Use TensorFlow
Worker X v v v
Inputs 0 | 10 | 16 | 10-28

O O o
Machine'"’“ \A o tho tma tma
models \\ //
max Predicted "
time

Evaluation: Neural network scheduling

100} 71 + OpenTu‘ner Default configuration: 9.82s
- \ + Spearmint OpenTuner: 8.71s
‘\Q —+ Bespoke optimizer BOAT: 4.31s

Wi |
T

N
N

l
e

10\
5

0 5 10 15 20 25 30
lteration

Best SGD iteration time (s)

I Existing systems don’t converge!

40

20

Further Bayesian Optimisation...

= BO overview/Tutorial
= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie
w_Archambeau.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie
w_adams.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie
w_gonzalez.pdf

BO tool with structural information
= Capable to embed structural information to surrogate model (e.g. BoTorch)

= Papers
= Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A
Review of Bayesian Optimization. Proceedings of the IEEE 104(1):148-175, 2016.

= Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine
Learning. CIFAR NCAP Summer School.

= Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and
Simulation Optimization. INFORMS Annual Meeting. 1

Auto-Tuning

= Manual Tuning
= User to learn expert knowledge and not transferable
* e.g. Ottertune (manually selects limited number of parameters then use BO)

= Automated Tuning
= Divide-and-diverge sampling to explore the configuration space

= For example, BO uses Gaussian processes, but it struggles to make accurate
performance predictions because of high dimensionality

- Generic Auto-Tuning with DAG models

= Use of DAG models for surrogate model, which mitigates the curse of
dimensionality while also retaining all configurable variables

= Exploit data analysis to identify parameter dependencies

*= Automatic building of DAG models: use of Bayesian Networks
42

21

Automation of DAG model building

® System’s inherent

Preprocessing Learning DAG Dependency DAG structure builds
Erine dependency graphs

Eape | O » .
i Decompose _ ® Decomposability allows
Standardize ; tuning a larger number
of parameters,
providing interpretable
optimisation
suggestions

Add Replace nodes -
Expert Knowledge Expert with probabilistic Probabilistic DAG Natural way to encode
_ S models expert knowledge in its

»

_ - graph
» Dependency DAG ;; i é;?::(ii)) -
f,~GP(f,. 1,)

43

-«... Compiler Optimisation

= LLVM Compiler pass list optimisation
—Jj (BaysOpt vs Random Search)
LLVM Opumlzer IR— 9.
Code Generator . \ Moindic arls

)ptimisation

O
[}
£
=
c
=]
x

10

Iteration

44

22

Reinforcement Learning in Computer Systems

= Agent interacts with Dynamic environment
* Goal: Maximise expectations over rewards in agent’s lifetime
*= Notion of Planning/Control, not single static configuration

What makes RL different from other ML paradigms?
= There is no supervisor, only a reward signal
= Feedback is delayed, not instantaneous ¥ il Action
= Time really matters (sequential)
= Agent’s actions affect the subsequent data it receives

Environment

Practical Consideration:
= Action spaces do not scale
= Exploration in production system not a good idea
= Simulations can oversimplify problem (Expensive to build)
= Online steps take too long

45

Reinforcement Learning for Optimisation

Many problems in systems are sequential Decision Making

and/or Combinatorial Problems on graph data
= Compiler Optimisation
= Input: XLA/HLO graph
= Objective: Scheduling fusion of ops
= Chip placement
= Input: Chip netlist graph
= Objective: placement on 2D of ND grids
= Datacentre resource allocation
= Input: job - workload graph
= Objective: Placement on datacentre cells and racks
= Packet Classification

= Input: network packets

= Objective: minimise the classification time and memory footprint
= Network congestion control with multiple connections
= Wide range of signals to make decisions (e.g., VM allocation)

= Database: Query optimiser, Dynamic indexing...

46

23

A brief history of Deep RL software

1. Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

2. Gen (2016-17): OpenAl gym gives unified task interface,
reference implementations (e.g. OpenAl baselines)

=*Good results on some environments (e.g. game), difficult to retool to
new domains and execution modes

=Abstractions/Libraries: Not fully reusable, customised towards game
simulators, execution coupled with algorithms

*High implementation risk: Lack of systematic testing, performance
strongly impacted by noisy heuristics

3. Gen (2017-): Generic declarative APIs, distributed abstractions
(Ray RIlib...Coach, Tunic?), some standard flavours emerge

47

RLIib (UC Berkeley) Architecture

User perspective: three main
layers to RLIib: 1. APIs that make RL accessible

e

OpenAl Policy | [Offine to a variety of applications
Multi-Agent .
Gym Serving Data
Custom Algorithms RLIib Algorithms 2. Collection of best-in-class

reference algorithms

|

3. Primitives for implementing
L - —

48

24

RLgraph: Modular Dataflow Composition

[Agent/Multi Agent RL apps/optimisation modules]
-

Prebuilt models, Inference

API, Component Configuration

Model Design, Dataflow Composition

RL Component Graph

Local Backends Variables/Operations
n

TensorFlow PyTorch

Distributed Execution Engine

Distributed TF Horovod Ray

Hardware: CPU, GPU, TPU, FPGAs...

| Agent API ‘
Graph Gr_aph
executor/ Builder
devices/
profiling OP registry

| Local backends |

. is a programming model to design
and execute RL algorithms across
execution paradigms

... generates incrementally testable,
transparently configurable code
through a staged build process

49

RLGraph: Separate Local and Distributed Execution
graphs for RL with different

» High performance RL computation
distributed backends

General purpose API: geil_action, updaite, export,..

‘ Agent API ‘
RLgraph
local Graph Graph
execution executor/ Builder
layer devices/ B
profiling OP registry
‘ Local backends |
Distributed
coordination Distributed TF/PS
layer
Ray Ray TE TE
Worker_1 Worker_n Worker_1 | " | Worker_n
Vectorized Local Graph executor
sample RLgraph syncs variables to PS,
collection agent manages plugins (Horovod)

50

25

Performance on Apex (Distributed Q-Learning)

175000

N
=

B RLLb
150000 mm RLgraph

125000

— RLlib
—— RLgraph

=
(@]

100000

75000

|
=
(@]

Environment frames/s

50000

Mean worker rewards
(e}

25000

) 2101k 2k 3k 4k 5k 6k 7k 8k
16 32 64 128 256 Time in seconds
Number of workers
Distributed sample performance Time to solve Pong (Score ~21)

51

ML Compiler Challenges

= Fast tensor operation capable compilers: Complex optimisation
plays a crucial role for LLM processing

= Use of ML to optimise ML Compiler

= Superoptimisation: Deal with massive parameter space
- use of Equality Saturation (ES), MCTS
- use of reinforcement Learning

= Many compiler optimisations are phase ordering problem

= Challenge to bridge the gap between ML models and HW
» Existing ML Compiler

Apache TVM

NVIDIA TensorRT - CuDNN
ONNX runtime

LLVM

Google MLIR

TensorFlow XLA
Meta Glow
PyTorch nvFuser
INTEL pLAIDmI
Open VINO

52

26

ML Compiler Optimisation
[AI Applications] + Hyper Parameter Tuning
™ " -
X X split
4 ML Compiler Layer) I e
y matmul matmul ®
Computational Graphs (e.g. ONNX)]— fX \ / S
L (= A B Cc A B c
L e — = = = #— ——————————— ° source graph target graph
el
, 8
Tensor Layout (Graph/Tile)] ‘E @ .
. - B OpF \ [mm————
_ Bl _ o . K1 E ‘. — . —\-] Fused_K1_K2 :—.
Runtime Operations/Scheduling], ------- \
= O
\ Hardware Primitives b CUDA Assembly Code Optimisation
TensorFlow, MXNet, and PyTorch
See ML Compiler Tutorial: https://mlc.ai/summer22/schedule 53
Also Survey: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9222299

Optimising DNN Computation with Graph Substitutions

= TASO (SOSP, 2019): Performance improvement by transformation of
computation graphs

= PET (OSDI, 2021): Optimizing Tensor Programs with Partially
Equivalent Transformations and Automated Corrections

= Equality Saturation for Tensor Graph Superoptimization (MLSys 2021)

= X-RLflow: Graph Reinforcement Learning for Neural Network Subgraph
Transformation (MLSys 2023)

relu X

P, T T
- matmul matmul - 3

el |

A A B

(a) before substitution (b) after substitution 5

27

TVM: Deep Learning Compiler

= TVM: end-to-end deep learning compilers

= Operator/expression-level optimisation operates on Tensor
Operation Abstraction(TIR)

= Core: Optimising programs through a sequence of transformation
= Automatic optimisation
DL Systems getting Faster & more Complex

First gen. DL Frameworks as Libraries, e.g., PyTorch, TensorFlow.
“ Second gen. DL Frameworks as Compilers, e.g., TVM, XLA.
Camputa Graphs

Al Applications Library Impl
& execut
Auto Driving b torch::linear
Code Complete torch: :add
Translation
X 1‘_, DL Compiler
‘-.ﬁ =E 7 ¥ R lvr (1 n §(;’(‘ G
e i fw x_len) (' >
Performance T 2

p Graph [e] Low-Is Tug-t Code

55

CuAsmRL: Optimising CUDA GPU SASS schedules
= Optimising GPU SASS schedules via Deep RL

CUDA kernels compilation pipeline:

C++/CUDA — PTX — SASS — Cubin

SASS: GPU native instructions. GPU architectures-dependent. (SIP optimizes at this level)

= Search space:

= Original: full permutation of instructions; computationally intractable

= Pruning: only global read and write memory instructions, e.g. LDG, STG etc.
= Mutation:

= Randomly select an instruction and reorder an instruction above or below
» Feedback signal:

= Assemble the mutated SASS and run on GPUs

56

28

CuAsmRL: Optimising CUDA GPU SASS schedules

= Apply all possible high-level
optimisation by reusing compilation
pipeline

= Search for optimal schedules by
playing the assembly game

= Each memory instruction can be swapped
with the instruction up and down

= Positive reward is given if the action reduce
runtime

= Iterative optimisation

Kernel source code aﬁ

‘ Grid search Auto-tuner

block_m =16
block_n =32
block_k =32

‘Compilation with optimal configs

Assembly game g%

‘v Optimized cubin

57

CuAsmRL: Optimising CUDA GPU SASS schedules
= Kernel Throughput

@ cuasmrl triton @ torch

131

o

Normalized Throughput
("3

@

~

mmLeakyReLu fused_ff softmax

il ke

self-attention geomean

58

29

Chip Placement with Reinforcement Learning

= A. Mirhoseini and A. Goldie: A graph placement methodology for
fast chip design, Nature, 2021.

Partitioning-Based Methods Stochastic/Hill-Climbing Methads
(e.g. MinCut) (e.g. Simulated Annealing)

+ A form of graph resource optimization

Analytic Solvers Learning-Based Methods : p " ; i
(e.g.RePlAce) consumption, chip area and cost, while adhering to constraints, such as

‘ e Place the chip components to minimize the latency of computation, power
congestion, cell utilization, heat profile, etc.

Port P1

Macro(M1)

.
PO_M1

Macro(MO) p1_mo

Port PO
=
PO_MO

59

Reinforcement Learning for Optimisation

Many problems in systems are sequential decision making
and/or combinatorial problems

= Compiler Optimisation

= Chip placement

= Datacentre resource allocation

= Network congestion control with multiple connections

= Wide range of signals to make decisions (e.g., VM allocation)
= Database: Query optimiser, Dynamic indexing...
= Emerging Agentic RL...

60

Summary: Massive Data Processing and Optimisation

- Dataflow is key element used in optimisation

- Parameter space is complex, large and dynamic/combinatorial

= Systems are nonlinear and difficult to model manually - Exploit ML

= Reinforcement Learning to optimise dynamic combinatorial problem
= Key concept behind is Dataflow (~=Computational Graph) structural
transformation/Decomposition

- Exploit structural information for model decomposition to accelerate
optimisation process and/or transform the structure

- Bayesian Optimisation and Reinforcement Learning are key

- Other ML algorithms would be potentially useful...

61

Course Schedule

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026
Session 1: Introduction

Session 2: Data Flow Programming: Map/Reduce to TensorFlow to ML
Session 3: Hands-on Tutorial: Data Flow Programing

Session 4: Large-scale Graph Data Processing / Search Space

Session 5: Probabilistic Programming + BO : Guest lecture (Brooks Paige)
Session 6: Optimisation of Computer Systems

Session 7: Optimisation in ML Compiler (Superoptimisation...)

Session 8: Project Study Presentation 62

31

