
1

Large-scale Data Processing and Optimisation

Overview

Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage
 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

2

2

Technologies supporting Cluster Computing

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis,

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)

3

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Tensorflow, Ray, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Rllib, Caffe, Keras,

Torch, MLlib…

4

3

Data Flow Programming

 Non-standard programming models
 Powerful abstraction: mapping computation into

dataflow graphs

Function f(x, y, z) = x* y + z

5

x
y

z

out

+

*

MapReduce Programming

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel
 Results from map operation get synthesised into a result of

original problem (reduce)

6

4

Data Flow Programming Examples

 Data (flow) parallel programming
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…
 e.g. ML compiler: computation graphs

MapReduce:
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph)
based: Dryad/Spark…

7

Data Flow Programming’s Usefulness for ML
 Data flow programming holds the key to natural, modular,

streamlined ML specification
 Same language for layer, network, and integration

specification
 For complex NN classes, RL with complex reward, gated networks,

attention/transformers, mix of NN and data processing

 Same language for ML algorithmics and compiler design
 Well-established analysis and compilation techniques

integrated within existing ML compilers (e.g. MLIR)
 MLIR (Multi-Level Intermediate Representation) is intended to be

a hybrid IR which can support multiple different requirements in a
unified infrastructure (https://mlir.llvm.org/)

8

5

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

9

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)

10

6

Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce)
 Not every graph algorithm is parallelisable (interdependent

computation)
 Not much data access locality
 High data access to computation ratio

11

Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model

Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework
NAIAD (MSR), TensorFlow…

12

7

Bulk synchronous parallel: Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…

13

Are Large Clusters and Many cores Efficient?
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters

14

8

Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%
communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%
communication)

15

Data Processing Paradigm Change
 Emergence of modern Neural Networks Applications
 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware
 Traditional dataflow programming does not deal with mathematical

objects (no deep learning back then), ML application control flow
requires to be numerically differentiable (i.e. TensorFlow)

 Now LLM, Agentic systems...

Image Classification Reinforcement Learning

16

9

Tuning Computer Systems is Complex

 Complex and High Dimension Parameter Space
 Expensive Objective Functions
 Hand-crafted solutions impractical, often left static or configured

through extensive offline analysis
 Not well-tuned system’s performance does not scale
 Necessity of scalable Auto-tuning

17

LLM Inference on heterogeneous GPU clusters

 Find optimal hardware
configuration for
lowest latency while
guaranteeing a specific
level of system
performance (minimum
throughput)

 Outer layer: GPU group
 Inner Layer: Linear

Solver

 Constrained Throughput-Latency Co-Optimisation

18

10

LLM Optimisation (from algorithms to system resources)

19

 Smaller LLMs
Quantization
Distillation
Low-Rank Adaptation
Weight Sharing
Sparse Matrices
Layer Dropping
Knowledge Transfer
Embedding Compression
Mixed Sparsity

 Inference Optimisation
KV-Caching
Speculative Decoding
Flash Attention
Paged Attention
Batch Inference
Early Exit Decoding
Parallel Decoding
Mixed Precision Inference
Quantized Kernels
Tensor Parallelism
Pipeline Parallelism
Sequence Parallelism
Graph Optimisation

Challenging: High Performance Computer Systems
 How do we improve performance:

 Manual tuning
 Auto-tuning

 What is performance? – objective function of optimisation
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)
 Large number of parameters
 Evaluation is slow and expensive

 What is Optimisation Model?
 Short-term dynamic control (e.g. stream processing: distinct workload or

dynamic workload)
 Combinatorial optimisation (e.g. indexing DB, device assignment)

 Integrate power of Hardware (Accelerator, GPU..)

Many systems problems are combinatorial in nature
20

11

Search Parameter Space

Bayesian
Optimisation

Genetic
algorithm /
Simulated
annealing

Random Search

High overheadSlight overheadNo overhead

Low #evaluation
Medium-high
#evaluationHigh #evaluation

21

Hill Climbing

Auto-tuning Complex Systems

 Grid search θ ∈ [1, 2, 3, …]

 Evolutionary approaches (e.g.)

 Hill-climbing (e.g.)

 Bayesian optimisation (e.g.)

1000s of evaluations
of objective function

Computation more
expensive

Fewer samples

 Many dimensions
 Expensive objective function
 Hand-crafted solutions impractical

(e.g. extensive offline analysis)

Blackbox Optimisation
 can surpass human

expert-level tuning

22

12

Optimisation: Iterative Operation

 Common to use an iterative global search algorithm for
optimisation problem

 e.g. Bayesian optimisation algorithm that is capable of
simultaneously approximating the target function that is
being optimised while optimising it.

 Automated machine learning (AutoML) algorithms being used
to choose an algorithm, an algorithm and hyperparameters,
or data preparation, algorithm and hyperparameters, with
very little user intervention

23

Machine Learning and Optimisation

 Function Optimisation
 Find the set of inputs to a target objective function that result in the

minimum or maximum of the function

 Function Approximation:
 Generalise from specific examples to a reusable mapping function for

making predictions on new examples

 ML can be described as function approximation as approximating
the unknown underlying function that maps examples of inputs to
outputs in order to make predictions on new data

 Function approximation often uses function optimisation

 At the core of many ML algorithms is an optimisation algorithm!

24

13

Examples of Machine Learning Algorithms…

25

Machine Learning and Optimisation

 Process of working through a predictive modeling involves
optimisation at multiple steps:

 Choosing hyperparameters of a model
 Choosing transformation to apply to the data prior to modeling
 Choosing modeling pipeline to use as the final model

 Convert Optimisation Process to Learning
 A numeric quantity must be predicted in the case of a regression

problem, whereas a class label must be predicted in the case of a
classification problem…

 Exploit ML based optimisation practically

26

14

Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

① Find promising point (high performance value in the
model)

② Evaluate the objective function at that point
③ Update the model to reflect this new measurement

27

Pros:
✓ Data efficient: converges in few iterations
✓ Able to deal with noisy observations

Cons:
✗ In many dimensions, model does not

converge to the objective function

Surrogate Model in Bayesian Optimisation

 Structural information (e.g. DAG model) improves Optimisation.
28

15

Structured Bayesian Optimisation (SBO)

✓ Better convergence
✓ Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
29

Probabilistic Model

 Probabilistic models incorporate random variables and
probability distributions into the model
 Deterministic model gives a single possible outcome
 Probabilistic model gives a probability distribution

 Used for various probabilistic logic inference (e.g. MCMC-
based inference, Bayesian inference…)

Tutorial: Session 5 – Guest Lecture by Brooks Paige

30

16

Probabilistic Programming: Probabilistic C++

Pyro Stheno

Probabilistic C++

31

Example: JVM Garbage Collection

 Cassandra's garbage collection

 Minimise 99th percentile latency of Cassandra

Cassandra

JVM
Garbage collection flags:

● Young generation size
● Survivor ratio
● Max tenuring threshold

32

17

Performance Improvement from Structure
1. User-given probabilistic model structured in semi-parametric

model using Directed Acyclic Graph

Tune three JVM parameters of database
(Cassandra) to minimise latency

2. Sub-Optimisation in numerical optimisation
 Exploit structure to split optimisation problem into smaller

optimisations (e.g. nested optimisation)
 Provide decomposition mechanisms

99th Percentile
LatencyGC Flags GC Rate

Model

GC Average
Duration Model

Latency
Model

Average
GC duration

GC Rate

33

Semi-parametric Model

 Easy to use and
well suited to SBO

 Understand
general trend of
Objective function

 High precision in
region of optimum
for finding highest
performance

Too restrictive

Too generic

Just right

34

18

DAG model in BOAT
struct CassandraModel : public DAGModel<CassandraModel> {

 void model(int ygs, int sr, int mtt){
 // Calculate the size of the heap regions
 double es = ygs * sr / (sr + 2.0);// Eden space's size
 double ss = ygs / (sr + 2.0); // Survivor space's size

 // Define the dataflow between semi-parametric models
 double rate = output("rate", rate_model, es);
 double duration = output("duration", duration_model,
 es, ss, mtt);
 double latency = output("latency", latency_model,
 rate, duration, es, ss, mtt);
 }

 ProbEngine<GCRateModel> rate_model;
 ProbEngine<GCDurationModel> duration_model;
 ProbEngine<LatencyModel> latency_model;
};

35

GC Rate Semi-parametric model

36

19

Evaluation: Garbage collection

37

Evaluation: Garbage collection

38

20

Evaluation: Neural networks (SGD) scheduling

Communication
modelMachine

models
tm1 tm2 tm3 tm4

max Predicted
time

Load balancing, worker
allocation over 10 machines =
~30 parameters

Use TensorFlow

39

Evaluation: Neural network scheduling

Default configuration: 9.82s
OpenTuner: 8.71s
BOAT: 4.31s

Existing systems don’t converge!

40

21

Further Bayesian Optimisation…

41

 BO overview/Tutorial
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_Archambeau.pdf
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_adams.pdf
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2024_2025/aid/BO_overvie

w_gonzalez.pdf

 BO tool with structural information
 Capable to embed structural information to surrogate model (e.g. BoTorch)

 Papers
 Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A

Review of Bayesian Optimization. Proceedings of the IEEE 104(1):148-175, 2016.
 Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine

Learning. CIFAR NCAP Summer School.
 Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and

Simulation Optimization. INFORMS Annual Meeting.

Auto-Tuning
 Manual Tuning

 User to learn expert knowledge and not transferable
 e.g. Ottertune (manually selects limited number of parameters then use BO)

 Automated Tuning
 Divide-and-diverge sampling to explore the configuration space
 For example, BO uses Gaussian processes, but it struggles to make accurate

performance predictions because of high dimensionality

Generic Auto-Tuning with DAG models

 Use of DAG models for surrogate model, which mitigates the curse of
dimensionality while also retaining all configurable variables

 Exploit data analysis to identify parameter dependencies
 Automatic building of DAG models: use of Bayesian Networks

42

22

Automation of DAG model building

 System’s inherent
structure builds
dependency graphs

 Decomposability allows
tuning a larger number
of parameters,
providing interpretable
optimisation
suggestions

 Natural way to encode
expert knowledge in its
graph

43

Bayesian Optimisation not for Combinatorial Model

LLVM Compiler pass list optimisation
(BaysOpt vs Random Search)

R
un

 T
im

e
(s

)

Iteration

44

23

Reinforcement Learning in Computer Systems
 Agent interacts with Dynamic environment
 Goal: Maximise expectations over rewards in agent’s lifetime
 Notion of Planning/Control, not single static configuration

What makes RL different from other ML paradigms?
 There is no supervisor, only a reward signal
 Feedback is delayed, not instantaneous
 Time really matters (sequential)
 Agent’s actions affect the subsequent data it receives

Practical Consideration:
 Action spaces do not scale
 Exploration in production system not a good idea
 Simulations can oversimplify problem (Expensive to build)
 Online steps take too long

45

Reinforcement Learning for Optimisation
Many problems in systems are sequential Decision Making
and/or Combinatorial Problems on graph data

 Compiler Optimisation
 Input: XLA/HLO graph
 Objective: Scheduling fusion of ops

 Chip placement
 Input: Chip netlist graph
 Objective: placement on 2D of ND grids

 Datacentre resource allocation
 Input: job - workload graph
 Objective: Placement on datacentre cells and racks

 Packet Classification
 Input: network packets
 Objective: minimise the classification time and memory footprint

 Network congestion control with multiple connections
 Wide range of signals to make decisions (e.g., VM allocation)
 Database: Query optimiser, Dynamic indexing…

46

24

A brief history of Deep RL software
1. Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

2. Gen (2016-17): OpenAI gym gives unified task interface,
reference implementations (e.g. OpenAI baselines)
Good results on some environments (e.g. game), difficult to retool to
new domains and execution modes
Abstractions/Libraries: Not fully reusable, customised towards game
simulators, execution coupled with algorithms
High implementation risk: Lack of systematic testing, performance
strongly impacted by noisy heuristics

3. Gen (2017-): Generic declarative APIs, distributed abstractions
(Ray Rllib…Coach, Tunic?), some standard flavours emerge

47

RLlib (UC Berkeley) Architecture

48

25

RLgraph: Modular Dataflow Composition

 ... is a programming model to design
and execute RL algorithms across
execution paradigms

 ... generates incrementally testable,
transparently configurable code
through a staged build process

49

RLGraph: Separate Local and Distributed Execution
 High performance RL computation graphs for RL with different

distributed backends

50

26

Performance on Apex (Distributed Q-Learning)

Distributed sample performance Time to solve Pong (Score ~21)

51

ML Compiler Challenges

 Fast tensor operation capable compilers: Complex optimisation
plays a crucial role for LLM processing

 Use of ML to optimise ML Compiler
 Superoptimisation: Deal with massive parameter space
 use of Equality Saturation (ES), MCTS
 use of reinforcement Learning

 Many compiler optimisations are phase ordering problem

 Challenge to bridge the gap between ML models and HW
 Existing ML Compiler

 Apache TVM
 NVIDIA TensorRT - CuDNN
 ONNX runtime
 LLVM
 Google MLIR

 TensorFlow XLA
 Meta Glow
 PyTorch nvFuser
 INTEL pLAIDml
 Open VINO

52

27

ML Compiler Optimisation

Hardware Primitives

Runtime Operations/Scheduling

Computational Graphs (e.g. ONNX)

Tensor Layout (Graph/Tile)

AI Applications

ML Compiler Layer

O
p

ti
m

is
at

io
n

+ Hyper Parameter Tuning

TensorFlow, MXNet, and PyTorch

CUDA Assembly Code Optimisation

See ML Compiler Tutorial: https://mlc.ai/summer22/schedule
Also Survey: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9222299

53

Optimising DNN Computation with Graph Substitutions
 TASO (SOSP, 2019): Performance improvement by transformation of

computation graphs
 PET (OSDI, 2021): Optimizing Tensor Programs with Partially

Equivalent Transformations and Automated Corrections
 Equality Saturation for Tensor Graph Superoptimization (MLSys 2021)
 X-RLflow: Graph Reinforcement Learning for Neural Network Subgraph

Transformation (MLSys 2023)

54

28

TVM: Deep Learning Compiler

 TVM: end-to-end deep learning compilers
 Operator/expression-level optimisation operates on Tensor

Operation Abstraction(TIR)
 Core: Optimising programs through a sequence of transformation
 Automatic optimisation

55

CuAsmRL: Optimising CUDA GPU SASS schedules
 Optimising GPU SASS schedules via Deep RL

 Search space:
 Original: full permutation of instructions; computationally intractable
 Pruning: only global read and write memory instructions, e.g. LDG, STG etc.

 Mutation:
 Randomly select an instruction and reorder an instruction above or below

 Feedback signal:
 Assemble the mutated SASS and run on GPUs

56

29

CuAsmRL: Optimising CUDA GPU SASS schedules
 Apply all possible high-level

optimisation by reusing compilation
pipeline

 Search for optimal schedules by
playing the assembly game

 Each memory instruction can be swapped
with the instruction up and down

 Positive reward is given if the action reduce
runtime

 Iterative optimisation

57

CuAsmRL: Optimising CUDA GPU SASS schedules
 Kernel Throughput

58

30

Chip Placement with Reinforcement Learning
 A. Mirhoseini and A. Goldie: A graph placement methodology for

fast chip design, Nature, 2021.

59

Reinforcement Learning for Optimisation
Many problems in systems are sequential decision making
and/or combinatorial problems

 Compiler Optimisation
 Chip placement
 Datacentre resource allocation
 Network congestion control with multiple connections

 Wide range of signals to make decisions (e.g., VM allocation)

 Database: Query optimiser, Dynamic indexing…

 Emerging Agentic RL…

60

31

Summary: Massive Data Processing and Optimisation

Dataflow is key element used in optimisation

Parameter space is complex, large and dynamic/combinatorial

 Systems are nonlinear and difficult to model manually  Exploit ML
 Reinforcement Learning to optimise dynamic combinatorial problem
 Key concept behind is Dataflow (~=Computational Graph) structural

transformation/Decomposition

Exploit structural information for model decomposition to accelerate
optimisation process and/or transform the structure

Bayesian Optimisation and Reinforcement Learning are key

Other ML algorithms would be potentially useful… 61

Course Schedule

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026

Session 1: Introduction

Session 2: Data Flow Programming: Map/Reduce to TensorFlow to ML

Session 3: Hands-on Tutorial: Data Flow Programing

Session 4: Large-scale Graph Data Processing / Search Space

Session 5: Probabilistic Programming + BO : Guest lecture (Brooks Paige)

Session 6: Optimisation of Computer Systems

Session 7: Optimisation in ML Compiler (Superoptimisation…)

Session 8: Project Study Presentation 62

