module Bijection where
open import Equality
open import Function
open import Level
record
isBij
{ℓ ℓ' : Level}
{A : Set ℓ}
{B : Set ℓ'}
(f : A → B)
: ------------
Set (ℓ ⊔ ℓ')
where
infix 8 _⁻¹
field
_⁻¹ : B → A
bijl : _⁻¹ ∘ f ≡ id
bijr : f ∘ _⁻¹ ≡ id
open isBij{{...}} public