Theory Tr

(*  Title:      HOL/HOLCF/Tr.thy
    Author:     Franz Regensburger
*)

section ‹The type of lifted booleans›

theory Tr
  imports Lift
begin

subsection ‹Type definition and constructors›

type_synonym tr = "bool lift"

translations
  (type) "tr"  (type) "bool lift"

definition TT :: "tr"
  where "TT = Def True"

definition FF :: "tr"
  where "FF = Def False"

text ‹Exhaustion and Elimination for type typtr

lemma Exh_tr: "t =   t = TT  t = FF"
  by (induct t) (auto simp: FF_def TT_def)

lemma trE [case_names bottom TT FF, cases type: tr]:
  "p =   Q; p = TT  Q; p = FF  Q  Q"
  by (induct p) (auto simp: FF_def TT_def)

lemma tr_induct [case_names bottom TT FF, induct type: tr]:
  "P   P TT  P FF  P x"
  by (cases x) simp_all

text ‹distinctness for type typtr

lemma dist_below_tr [simp]:
  "TT \<notsqsubseteq> " "FF \<notsqsubseteq> " "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT"
  by (simp_all add: TT_def FF_def)

lemma dist_eq_tr [simp]: "TT  " "FF  " "TT  FF" "  TT" "  FF" "FF  TT"
  by (simp_all add: TT_def FF_def)

lemma TT_below_iff [simp]: "TT  x  x = TT"
  by (induct x) simp_all

lemma FF_below_iff [simp]: "FF  x  x = FF"
  by (induct x) simp_all

lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT  x = FF"
  by (induct x) simp_all

lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF  x = TT"
  by (induct x) simp_all


subsection ‹Case analysis›

default_sort pcpo

definition tr_case :: "'a  'a  tr  'a"
  where "tr_case = (Λ t e (Def b). if b then t else e)"

abbreviation cifte_syn :: "[tr, 'c, 'c]  'c"  ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
  where "If b then e1 else e2  tr_casee1e2b"

translations
  "Λ (XCONST TT). t"  "CONST tr_caset"
  "Λ (XCONST FF). t"  "CONST tr_caset"

lemma ifte_thms [simp]:
  "If  then e1 else e2 = "
  "If FF then e1 else e2 = e2"
  "If TT then e1 else e2 = e1"
  by (simp_all add: tr_case_def TT_def FF_def)


subsection ‹Boolean connectives›

definition trand :: "tr  tr  tr"
  where andalso_def: "trand = (Λ x y. If x then y else FF)"

abbreviation andalso_syn :: "tr  tr  tr"  ("_ andalso _" [36,35] 35)
  where "x andalso y  trandxy"

definition tror :: "tr  tr  tr"
  where orelse_def: "tror = (Λ x y. If x then TT else y)"

abbreviation orelse_syn :: "tr  tr  tr"  ("_ orelse _"  [31,30] 30)
  where "x orelse y  trorxy"

definition neg :: "tr  tr"
  where "neg = flift2 Not"

definition If2 :: "tr  'c  'c  'c"
  where "If2 Q x y = (If Q then x else y)"

text ‹tactic for tr-thms with case split›

lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def

text ‹lemmas about andalso, orelse, neg and if›

lemma andalso_thms [simp]:
  "(TT andalso y) = y"
  "(FF andalso y) = FF"
  "( andalso y) = "
  "(y andalso TT) = y"
  "(y andalso y) = y"
      apply (unfold andalso_def, simp_all)
   apply (cases y, simp_all)
  apply (cases y, simp_all)
  done

lemma orelse_thms [simp]:
  "(TT orelse y) = TT"
  "(FF orelse y) = y"
  "( orelse y) = "
  "(y orelse FF) = y"
  "(y orelse y) = y"
      apply (unfold orelse_def, simp_all)
   apply (cases y, simp_all)
  apply (cases y, simp_all)
  done

lemma neg_thms [simp]:
  "negTT = FF"
  "negFF = TT"
  "neg = "
  by (simp_all add: neg_def TT_def FF_def)

text ‹split-tac for If via If2 because the constant has to be a constant›

lemma split_If2: "P (If2 Q x y)  ((Q =   P )  (Q = TT  P x)  (Q = FF  P y))"
  by (cases Q) (simp_all add: If2_def)

(* FIXME unused!? *)
ML fun split_If_tac ctxt =
  simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm If2_def} RS sym])
    THEN' (split_tac ctxt [@{thm split_If2}])

subsection "Rewriting of HOLCF operations to HOL functions"

lemma andalso_or: "t    (t andalso s) = FF  t = FF  s = FF"
  by (cases t) simp_all

lemma andalso_and: "t    ((t andalso s)  FF)  t  FF  s  FF"
  by (cases t) simp_all

lemma Def_bool1 [simp]: "Def x  FF  x"
  by (simp add: FF_def)

lemma Def_bool2 [simp]: "Def x = FF  ¬ x"
  by (simp add: FF_def)

lemma Def_bool3 [simp]: "Def x = TT  x"
  by (simp add: TT_def)

lemma Def_bool4 [simp]: "Def x  TT  ¬ x"
  by (simp add: TT_def)

lemma If_and_if: "(If Def P then A else B) = (if P then A else B)"
  by (cases "Def P") (auto simp add: TT_def[symmetric] FF_def[symmetric])


subsection ‹Compactness›

lemma compact_TT: "compact TT"
  by (rule compact_chfin)

lemma compact_FF: "compact FF"
  by (rule compact_chfin)

end