Theory Porder

(*  Title:      HOL/HOLCF/Porder.thy
    Author:     Franz Regensburger and Brian Huffman
*)

section ‹Partial orders›

theory Porder
  imports Main
begin

declare [[typedef_overloaded]]


subsection ‹Type class for partial orders›

class below =
  fixes below :: "'a  'a  bool"
begin

notation (ASCII)
  below (infix "<<" 50)

notation
  below (infix "" 50)

abbreviation not_below :: "'a  'a  bool"  (infix "\<notsqsubseteq>" 50)
  where "not_below x y  ¬ below x y"

notation (ASCII)
  not_below  (infix "~<<" 50)

lemma below_eq_trans: "a  b  b = c  a  c"
  by (rule subst)

lemma eq_below_trans: "a = b  b  c  a  c"
  by (rule ssubst)

end

class po = below +
  assumes below_refl [iff]: "x  x"
  assumes below_trans: "x  y  y  z  x  z"
  assumes below_antisym: "x  y  y  x  x = y"
begin

lemma eq_imp_below: "x = y  x  y"
  by simp

lemma box_below: "a  b  c  a  b  d  c  d"
  by (rule below_trans [OF below_trans])

lemma po_eq_conv: "x = y  x  y  y  x"
  by (fast intro!: below_antisym)

lemma rev_below_trans: "y  z  x  y  x  z"
  by (rule below_trans)

lemma not_below2not_eq: "x \<notsqsubseteq> y  x  y"
  by auto

end

lemmas HOLCF_trans_rules [trans] =
  below_trans
  below_antisym
  below_eq_trans
  eq_below_trans

context po
begin

subsection ‹Upper bounds›

definition is_ub :: "'a set  'a  bool" (infix "<|" 55)
  where "S <| x  (yS. y  x)"

lemma is_ubI: "(x. x  S  x  u)  S <| u"
  by (simp add: is_ub_def)

lemma is_ubD: "S <| u; x  S  x  u"
  by (simp add: is_ub_def)

lemma ub_imageI: "(x. x  S  f x  u)  (λx. f x) ` S <| u"
  unfolding is_ub_def by fast

lemma ub_imageD: "f ` S <| u; x  S  f x  u"
  unfolding is_ub_def by fast

lemma ub_rangeI: "(i. S i  x)  range S <| x"
  unfolding is_ub_def by fast

lemma ub_rangeD: "range S <| x  S i  x"
  unfolding is_ub_def by fast

lemma is_ub_empty [simp]: "{} <| u"
  unfolding is_ub_def by fast

lemma is_ub_insert [simp]: "(insert x A) <| y = (x  y  A <| y)"
  unfolding is_ub_def by fast

lemma is_ub_upward: "S <| x; x  y  S <| y"
  unfolding is_ub_def by (fast intro: below_trans)


subsection ‹Least upper bounds›

definition is_lub :: "'a set  'a  bool" (infix "<<|" 55)
  where "S <<| x  S <| x  (u. S <| u  x  u)"

definition lub :: "'a set  'a"
  where "lub S = (THE x. S <<| x)"

end

syntax (ASCII)
  "_BLub" :: "[pttrn, 'a set, 'b]  'b" ("(3LUB _:_./ _)" [0,0, 10] 10)

syntax
  "_BLub" :: "[pttrn, 'a set, 'b]  'b" ("(3__./ _)" [0,0, 10] 10)

translations
  "LUB x:A. t"  "CONST lub ((λx. t) ` A)"

context po
begin

abbreviation Lub  (binder "" 10)
  where "n. t n  lub (range t)"

notation (ASCII)
  Lub  (binder "LUB " 10)

text ‹access to some definition as inference rule›

lemma is_lubD1: "S <<| x  S <| x"
  unfolding is_lub_def by fast

lemma is_lubD2: "S <<| x; S <| u  x  u"
  unfolding is_lub_def by fast

lemma is_lubI: "S <| x; u. S <| u  x  u  S <<| x"
  unfolding is_lub_def by fast

lemma is_lub_below_iff: "S <<| x  x  u  S <| u"
  unfolding is_lub_def is_ub_def by (metis below_trans)

text ‹lubs are unique›

lemma is_lub_unique: "S <<| x  S <<| y  x = y"
  unfolding is_lub_def is_ub_def by (blast intro: below_antisym)

text ‹technical lemmas about termlub and termis_lub

lemma is_lub_lub: "M <<| x  M <<| lub M"
  unfolding lub_def by (rule theI [OF _ is_lub_unique])

lemma lub_eqI: "M <<| l  lub M = l"
  by (rule is_lub_unique [OF is_lub_lub])

lemma is_lub_singleton [simp]: "{x} <<| x"
  by (simp add: is_lub_def)

lemma lub_singleton [simp]: "lub {x} = x"
  by (rule is_lub_singleton [THEN lub_eqI])

lemma is_lub_bin: "x  y  {x, y} <<| y"
  by (simp add: is_lub_def)

lemma lub_bin: "x  y  lub {x, y} = y"
  by (rule is_lub_bin [THEN lub_eqI])

lemma is_lub_maximal: "S <| x  x  S  S <<| x"
  by (erule is_lubI, erule (1) is_ubD)

lemma lub_maximal: "S <| x  x  S  lub S = x"
  by (rule is_lub_maximal [THEN lub_eqI])


subsection ‹Countable chains›

definition chain :: "(nat  'a)  bool"
  where ― ‹Here we use countable chains and I prefer to code them as functions!›
  "chain Y = (i. Y i  Y (Suc i))"

lemma chainI: "(i. Y i  Y (Suc i))  chain Y"
  unfolding chain_def by fast

lemma chainE: "chain Y  Y i  Y (Suc i)"
  unfolding chain_def by fast

text ‹chains are monotone functions›

lemma chain_mono_less: "chain Y  i < j  Y i  Y j"
  by (erule less_Suc_induct, erule chainE, erule below_trans)

lemma chain_mono: "chain Y  i  j  Y i  Y j"
  by (cases "i = j") (simp_all add: chain_mono_less)

lemma chain_shift: "chain Y  chain (λi. Y (i + j))"
  by (rule chainI, simp, erule chainE)

text ‹technical lemmas about (least) upper bounds of chains›

lemma is_lub_rangeD1: "range S <<| x  S i  x"
  by (rule is_lubD1 [THEN ub_rangeD])

lemma is_ub_range_shift: "chain S  range (λi. S (i + j)) <| x = range S <| x"
  apply (rule iffI)
   apply (rule ub_rangeI)
   apply (rule_tac y="S (i + j)" in below_trans)
    apply (erule chain_mono)
    apply (rule le_add1)
   apply (erule ub_rangeD)
  apply (rule ub_rangeI)
  apply (erule ub_rangeD)
  done

lemma is_lub_range_shift: "chain S  range (λi. S (i + j)) <<| x = range S <<| x"
  by (simp add: is_lub_def is_ub_range_shift)

text ‹the lub of a constant chain is the constant›

lemma chain_const [simp]: "chain (λi. c)"
  by (simp add: chainI)

lemma is_lub_const: "range (λx. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)

lemma lub_const [simp]: "(i. c) = c"
  by (rule is_lub_const [THEN lub_eqI])


subsection ‹Finite chains›

definition max_in_chain :: "nat  (nat  'a)  bool"
  where ― ‹finite chains, needed for monotony of continuous functions›
  "max_in_chain i C  (j. i  j  C i = C j)"

definition finite_chain :: "(nat  'a)  bool"
  where "finite_chain C = (chain C  (i. max_in_chain i C))"

text ‹results about finite chains›

lemma max_in_chainI: "(j. i  j  Y i = Y j)  max_in_chain i Y"
  unfolding max_in_chain_def by fast

lemma max_in_chainD: "max_in_chain i Y  i  j  Y i = Y j"
  unfolding max_in_chain_def by fast

lemma finite_chainI: "chain C  max_in_chain i C  finite_chain C"
  unfolding finite_chain_def by fast

lemma finite_chainE: "finite_chain C; i. chain C; max_in_chain i C  R  R"
  unfolding finite_chain_def by fast

lemma lub_finch1: "chain C  max_in_chain i C  range C <<| C i"
  apply (rule is_lubI)
   apply (rule ub_rangeI, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (drule (1) max_in_chainD, simp)
   apply (erule (1) chain_mono)
  apply (erule ub_rangeD)
  done

lemma lub_finch2: "finite_chain C  range C <<| C (LEAST i. max_in_chain i C)"
  apply (erule finite_chainE)
  apply (erule LeastI2 [where Q="λi. range C <<| C i"])
  apply (erule (1) lub_finch1)
  done

lemma finch_imp_finite_range: "finite_chain Y  finite (range Y)"
  apply (erule finite_chainE)
  apply (rule_tac B="Y ` {..i}" in finite_subset)
   apply (rule subsetI)
   apply (erule rangeE, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (subgoal_tac "Y j = Y i", simp)
    apply (simp add: max_in_chain_def)
   apply simp
  apply simp
  done

lemma finite_range_has_max:
  fixes f :: "nat  'a"
    and r :: "'a  'a  bool"
  assumes mono: "i j. i  j  r (f i) (f j)"
  assumes finite_range: "finite (range f)"
  shows "k. i. r (f i) (f k)"
proof (intro exI allI)
  fix i :: nat
  let ?j = "LEAST k. f k = f i"
  let ?k = "Max ((λx. LEAST k. f k = x) ` range f)"
  have "?j  ?k"
  proof (rule Max_ge)
    show "finite ((λx. LEAST k. f k = x) ` range f)"
      using finite_range by (rule finite_imageI)
    show "?j  (λx. LEAST k. f k = x) ` range f"
      by (intro imageI rangeI)
  qed
  hence "r (f ?j) (f ?k)"
    by (rule mono)
  also have "f ?j = f i"
    by (rule LeastI, rule refl)
  finally show "r (f i) (f ?k)" .
qed

lemma finite_range_imp_finch: "chain Y  finite (range Y)  finite_chain Y"
  apply (subgoal_tac "k. i. Y i  Y k")
   apply (erule exE)
   apply (rule finite_chainI, assumption)
   apply (rule max_in_chainI)
   apply (rule below_antisym)
    apply (erule (1) chain_mono)
   apply (erule spec)
  apply (rule finite_range_has_max)
   apply (erule (1) chain_mono)
  apply assumption
  done

lemma bin_chain: "x  y  chain (λi. if i=0 then x else y)"
  by (rule chainI) simp

lemma bin_chainmax: "x  y  max_in_chain (Suc 0) (λi. if i=0 then x else y)"
  by (simp add: max_in_chain_def)

lemma is_lub_bin_chain: "x  y  range (λi::nat. if i=0 then x else y) <<| y"
  apply (frule bin_chain)
  apply (drule bin_chainmax)
  apply (drule (1) lub_finch1)
  apply simp
  done

text ‹the maximal element in a chain is its lub›

lemma lub_chain_maxelem: "Y i = c  i. Y i  c  lub (range Y) = c"
  by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)

end

end