Theory Buffer

(*  Title:      HOL/HOLCF/FOCUS/Buffer.thy
    Author:     David von Oheimb, TU Muenchen

Formalization of section 4 of

@inproceedings {broy_mod94,
    author = {Manfred Broy},
    title = {{Specification and Refinement of a Buffer of Length One}},
    booktitle = {Deductive Program Design},
    year = {1994},
    editor = {Manfred Broy},
    volume = {152},
    series = {ASI Series, Series F: Computer and System Sciences},
    pages = {273 -- 304},
    publisher = {Springer}
}

Slides available from http://ddvo.net/talks/1-Buffer.ps.gz

*)

theory Buffer
imports FOCUS
begin

typedecl D

datatype
  M     = Md D | Mreq ("")

datatype
  State = Sd D | Snil ("¤")

type_synonym
  SPF11         = "M fstream  D fstream"

type_synonym
  SPEC11        = "SPF11 set"

type_synonym
  SPSF11        = "State  SPF11"

type_synonym
  SPECS11       = "SPSF11 set"

definition
  BufEq_F       :: "SPEC11  SPEC11" where
  "BufEq_F B = {f. d. f(Md d<>) = <> 
                (x. ffB. f(Md dx) = dffx)}"

definition
  BufEq         :: "SPEC11" where
  "BufEq = gfp BufEq_F"

definition
  BufEq_alt     :: "SPEC11" where
  "BufEq_alt = gfp (λB. {f. d. f(Md d<> ) = <> 
                         (ffB. (x. f(Md dx) = dffx))})"

definition
  BufAC_Asm_F   :: " (M fstream set)  (M fstream set)" where
  "BufAC_Asm_F A = {s. s = <> 
                  (d x. s = Md dx  (x = <>  (ftx = Def   (rtx)A)))}"

definition
  BufAC_Asm     :: " (M fstream set)" where
  "BufAC_Asm = gfp BufAC_Asm_F"

definition
  BufAC_Cmt_F   :: "((M fstream * D fstream) set) 
                    ((M fstream * D fstream) set)" where
  "BufAC_Cmt_F C = {(s,t). d x.
                           (s = <>              t = <>                 ) 
                           (s = Md d<>        t = <>                 ) 
                           (s = Md dx  (ftt = Def d  (x,rtt)C))}"

definition
  BufAC_Cmt     :: "((M fstream * D fstream) set)" where
  "BufAC_Cmt = gfp BufAC_Cmt_F"

definition
  BufAC         :: "SPEC11" where
  "BufAC = {f. x. xBufAC_Asm  (x,fx)BufAC_Cmt}"

definition
  BufSt_F       :: "SPECS11  SPECS11" where
  "BufSt_F H = {h. s  . h s      <>        = <>         
                                 (d x. h ¤     (Md dx) = h (Sd d)x 
                                (hhH. h (Sd d)(   x) = d(hh ¤x)))}"

definition
  BufSt_P       :: "SPECS11" where
  "BufSt_P = gfp BufSt_F"

definition
  BufSt         :: "SPEC11" where
  "BufSt = {f. hBufSt_P. f = h ¤}"


lemma set_cong: "X. A = B  (xA) = (xB)"
by (erule subst, rule refl)


(**** BufEq *******************************************************************)

lemma mono_BufEq_F: "mono BufEq_F"
by (unfold mono_def BufEq_F_def, fast)

lemmas BufEq_fix = mono_BufEq_F [THEN BufEq_def [THEN eq_reflection, THEN def_gfp_unfold]]

lemma BufEq_unfold: "(fBufEq) = (d. f(Md d<>) = <> 
                 (x. ffBufEq. f(Md dx) = d(ffx)))"
apply (subst BufEq_fix [THEN set_cong])
apply (unfold BufEq_F_def)
apply (simp)
done

lemma Buf_f_empty: "fBufEq  f<> = <>"
by (drule BufEq_unfold [THEN iffD1], auto)

lemma Buf_f_d: "fBufEq  f(Md d<>) = <>"
by (drule BufEq_unfold [THEN iffD1], auto)

lemma Buf_f_d_req:
        "fBufEq  ff. ffBufEq  f(Md dx) = dffx"
by (drule BufEq_unfold [THEN iffD1], auto)


(**** BufAC_Asm ***************************************************************)

lemma mono_BufAC_Asm_F: "mono BufAC_Asm_F"
by (unfold mono_def BufAC_Asm_F_def, fast)

lemmas BufAC_Asm_fix =
  mono_BufAC_Asm_F [THEN BufAC_Asm_def [THEN eq_reflection, THEN def_gfp_unfold]]

lemma BufAC_Asm_unfold: "(sBufAC_Asm) = (s = <>  (d x.
        s = Md dx  (x = <>  (ftx = Def   (rtx)BufAC_Asm))))"
apply (subst BufAC_Asm_fix [THEN set_cong])
apply (unfold BufAC_Asm_F_def)
apply (simp)
done

lemma BufAC_Asm_empty: "<>  BufAC_Asm"
by (rule BufAC_Asm_unfold [THEN iffD2], auto)

lemma BufAC_Asm_d: "Md d<>  BufAC_Asm"
by (rule BufAC_Asm_unfold [THEN iffD2], auto)
lemma BufAC_Asm_d_req: "x  BufAC_Asm  Md dx  BufAC_Asm"
by (rule BufAC_Asm_unfold [THEN iffD2], auto)
lemma BufAC_Asm_prefix2: "abs  BufAC_Asm ==> s  BufAC_Asm"
by (drule BufAC_Asm_unfold [THEN iffD1], auto)


(**** BBufAC_Cmt **************************************************************)

lemma mono_BufAC_Cmt_F: "mono BufAC_Cmt_F"
by (unfold mono_def BufAC_Cmt_F_def, fast)

lemmas BufAC_Cmt_fix =
  mono_BufAC_Cmt_F [THEN BufAC_Cmt_def [THEN eq_reflection, THEN def_gfp_unfold]]

lemma BufAC_Cmt_unfold: "((s,t)  BufAC_Cmt) = (d x.
     (s = <>             t = <>) 
     (s = Md d<>        t = <>) 
     (s = Md dx  ftt = Def d  (x, rtt)  BufAC_Cmt))"
apply (subst BufAC_Cmt_fix [THEN set_cong])
apply (unfold BufAC_Cmt_F_def)
apply (simp)
done

lemma BufAC_Cmt_empty: "f  BufEq  (<>, f<>)  BufAC_Cmt"
by (rule BufAC_Cmt_unfold [THEN iffD2], auto simp add: Buf_f_empty)

lemma BufAC_Cmt_d: "f  BufEq  (a, f(a))  BufAC_Cmt"
by (rule BufAC_Cmt_unfold [THEN iffD2], auto simp add: Buf_f_d)

lemma BufAC_Cmt_d2:
 "(Md d, f(Md d))  BufAC_Cmt  f(Md d) = "
by (drule BufAC_Cmt_unfold [THEN iffD1], auto)

lemma BufAC_Cmt_d3:
"(Md dx, f(Md dx))  BufAC_Cmt  (x, rt(f(Md dx)))  BufAC_Cmt"
by (drule BufAC_Cmt_unfold [THEN iffD1], auto)

lemma BufAC_Cmt_d32:
"(Md dx, f(Md dx))  BufAC_Cmt  ft(f(Md dx)) = Def d"
by (drule BufAC_Cmt_unfold [THEN iffD1], auto)

(**** BufAC *******************************************************************)

lemma BufAC_f_d: "f  BufAC  f(Md d) = "
apply (unfold BufAC_def)
apply (fast intro: BufAC_Cmt_d2 BufAC_Asm_d)
done

lemma ex_elim_lemma: "(ffB. (x. f(abx) = dffx)) =
    ((x. ft(f(abx)) = Def d)  (LAM x. rt(f(abx)))B)"
(*  this is an instance (though unification cannot handle this) of
lemma "(? ff:B. (!x. f⋅x = d↝ff⋅x)) = \
   \((!x. ft⋅(f⋅x) = Def d) & (LAM x. rt⋅(f⋅x)):B)"*)
apply safe
apply (  rule_tac [2] P="(λx. xB)" in ssubst)
prefer 3
apply (   assumption)
apply (  rule_tac [2] cfun_eqI)
apply (  drule_tac [2] spec)
apply (  drule_tac [2] f="rt" in cfun_arg_cong)
prefer 2
apply (  simp)
prefer 2
apply ( simp)
apply (rule_tac bexI)
apply auto
apply (drule spec)
apply (erule exE)
apply (erule ssubst)
apply (simp)
done

lemma BufAC_f_d_req: "fBufAC  ffBufAC. x. f(Md dx) = dffx"
apply (unfold BufAC_def)
apply (rule ex_elim_lemma [THEN iffD2])
apply safe
apply  (fast intro: BufAC_Cmt_d32 [THEN Def_maximal]
             monofun_cfun_arg BufAC_Asm_empty [THEN BufAC_Asm_d_req])
apply (auto intro: BufAC_Cmt_d3 BufAC_Asm_d_req)
done


(**** BufSt *******************************************************************)

lemma mono_BufSt_F: "mono BufSt_F"
by (unfold mono_def BufSt_F_def, fast)

lemmas BufSt_P_fix =
  mono_BufSt_F [THEN BufSt_P_def [THEN eq_reflection, THEN def_gfp_unfold]]

lemma BufSt_P_unfold: "(hBufSt_P) = (s. h s<> = <> 
           (d x. h ¤     (Md dx)   =    h (Sd d)x 
      (hhBufSt_P. h (Sd d)(x)   = d(hh ¤    x))))"
apply (subst BufSt_P_fix [THEN set_cong])
apply (unfold BufSt_F_def)
apply (simp)
done

lemma BufSt_P_empty: "h  BufSt_P  h s      <>       = <>"
by (drule BufSt_P_unfold [THEN iffD1], auto)
lemma BufSt_P_d: "h  BufSt_P  h  ¤    (Md dx) = h (Sd d)x"
by (drule BufSt_P_unfold [THEN iffD1], auto)
lemma BufSt_P_d_req: "h  BufSt_P ==> hhBufSt_P.
                                          h (Sd d)(   x) = d(hh ¤    x)"
by (drule BufSt_P_unfold [THEN iffD1], auto)


(**** Buf_AC_imp_Eq ***********************************************************)

lemma Buf_AC_imp_Eq: "BufAC  BufEq"
apply (unfold BufEq_def)
apply (rule gfp_upperbound)
apply (unfold BufEq_F_def)
apply safe
apply  (erule BufAC_f_d)
apply (drule BufAC_f_d_req)
apply (fast)
done


(**** Buf_Eq_imp_AC by coinduction ********************************************)

lemma BufAC_Asm_cong_lemma [rule_format]: "s f ff. fBufEq  ffBufEq  
  sBufAC_Asm  stream_take n(fs) = stream_take n(ffs)"
apply (induct_tac "n")
apply  (simp)
apply (intro strip)
apply (drule BufAC_Asm_unfold [THEN iffD1])
apply safe
apply   (simp add: Buf_f_empty)
apply  (simp add: Buf_f_d)
apply (drule ft_eq [THEN iffD1])
apply (clarsimp)
apply (drule Buf_f_d_req)+
apply safe
apply (erule ssubst)+
apply (simp (no_asm))
apply (fast)
done

lemma BufAC_Asm_cong: "f  BufEq; ff  BufEq; s  BufAC_Asm  fs = ffs"
apply (rule stream.take_lemma)
apply (erule (2) BufAC_Asm_cong_lemma)
done

lemma Buf_Eq_imp_AC_lemma: "f  BufEq; x  BufAC_Asm  (x, fx)  BufAC_Cmt"
apply (unfold BufAC_Cmt_def)
apply (rotate_tac)
apply (erule weak_coinduct_image)
apply (unfold BufAC_Cmt_F_def)
apply safe
apply    (erule Buf_f_empty)
apply   (erule Buf_f_d)
apply  (drule Buf_f_d_req)
apply  (clarsimp)
apply  (erule exI)
apply (drule BufAC_Asm_prefix2)
apply (frule Buf_f_d_req)
apply (clarsimp)
apply (erule ssubst)
apply (simp)
apply (drule (2) BufAC_Asm_cong)
apply (erule subst)
apply (erule imageI)
done
lemma Buf_Eq_imp_AC: "BufEq  BufAC"
apply (unfold BufAC_def)
apply (clarify)
apply (erule (1) Buf_Eq_imp_AC_lemma)
done

(**** Buf_Eq_eq_AC ************************************************************)

lemmas Buf_Eq_eq_AC = Buf_AC_imp_Eq [THEN Buf_Eq_imp_AC [THEN subset_antisym]]


(**** alternative (not strictly) stronger version of Buf_Eq *******************)

lemma Buf_Eq_alt_imp_Eq: "BufEq_alt  BufEq"
apply (unfold BufEq_def BufEq_alt_def)
apply (rule gfp_mono)
apply (unfold BufEq_F_def)
apply (fast)
done

(* direct proof of "BufEq ⊆ BufEq_alt" seems impossible *)


lemma Buf_AC_imp_Eq_alt: "BufAC <= BufEq_alt"
apply (unfold BufEq_alt_def)
apply (rule gfp_upperbound)
apply (fast elim: BufAC_f_d BufAC_f_d_req)
done

lemmas Buf_Eq_imp_Eq_alt = subset_trans [OF Buf_Eq_imp_AC Buf_AC_imp_Eq_alt]

lemmas Buf_Eq_alt_eq = subset_antisym [OF Buf_Eq_alt_imp_Eq Buf_Eq_imp_Eq_alt]


(**** Buf_Eq_eq_St ************************************************************)

lemma Buf_St_imp_Eq: "BufSt <= BufEq"
apply (unfold BufSt_def BufEq_def)
apply (rule gfp_upperbound)
apply (unfold BufEq_F_def)
apply safe
apply ( simp add: BufSt_P_d BufSt_P_empty)
apply (simp add: BufSt_P_d)
apply (drule BufSt_P_d_req)
apply (force)
done

lemma Buf_Eq_imp_St: "BufEq <= BufSt"
apply (unfold BufSt_def BufSt_P_def)
apply safe
apply (rename_tac f)
apply (rule_tac x="λs. case s of Sd d => Λ x. f(Md dx)| ¤ => f" in bexI)
apply ( simp)
apply (erule weak_coinduct_image)
apply (unfold BufSt_F_def)
apply (simp)
apply safe
apply (  rename_tac "s")
apply (  induct_tac "s")
apply (   simp add: Buf_f_d)
apply (  simp add: Buf_f_empty)
apply ( simp)
apply (simp)
apply (rename_tac f d x)
apply (drule_tac d="d" and x="x" in Buf_f_d_req)
apply auto
done

lemmas Buf_Eq_eq_St = Buf_St_imp_Eq [THEN Buf_Eq_imp_St [THEN subset_antisym]]

end