Theory Example

(*  Title:      HOL/NanoJava/Example.thy
    Author:     David von Oheimb
    Copyright   2001 Technische Universitaet Muenchen
*)

section "Example"

theory Example
imports Equivalence
begin

text ‹

\begin{verbatim}
class Nat {

  Nat pred;

  Nat suc() 
    { Nat n = new Nat(); n.pred = this; return n; }

  Nat eq(Nat n)
    { if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);
                             else return n.pred; // false
      else if (n.pred != null) return this.pred; // false
           else return this.suc(); // true
    }

  Nat add(Nat n)
    { if (this.pred != null) return this.pred.add(n.suc()); else return n; }

  public static void main(String[] args) // test x+1=1+x
    {
        Nat one = new Nat().suc();
        Nat x   = new Nat().suc().suc().suc().suc();
        Nat ok = x.suc().eq(x.add(one));
        System.out.println(ok != null);
    }
}
\end{verbatim}

›

axiomatization where
  This_neq_Par [simp]: "This  Par" and
  Res_neq_This [simp]: "Res   This"


subsection "Program representation"

axiomatization 
  N    :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *)
  and pred :: fname
  and suc add :: mname
  and any  :: vname

abbreviation
  dummy :: expr ("<>")
  where "<> == LAcc any"

abbreviation
  one :: expr
  where "one == {Nat}new Nat..suc(<>)"

text ‹The following properties could be derived from a more complete
        program model, which we leave out for laziness.›

axiomatization where Nat_no_subclasses [simp]: "D ≼C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some 
   par=Class Nat, res=Class Nat, lcl=[], 
   bdy= If((LAcc This..pred)) 
          (Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>))) 
        Else Res :== LAcc Par "

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some 
   par=NT, res=Class Nat, lcl=[], 
   bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This "

axiomatization where field_Nat [simp]: "field Nat = Map.empty(predClass Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
by (simp add: init_locs_def init_vars_def)

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
by (simp add: init_locs_def init_vars_def)

lemma upd_obj_new_obj_Nat [simp]: 
  "upd_obj a pred v (new_obj a Nat s) = hupd(a(Nat, Map.empty(predv))) s"
by (simp add: new_obj_def init_vars_def upd_obj_def Let_def)


subsection "``atleast'' relation for interpretation of Nat ``values''"

primrec Nat_atleast :: "state  val  nat  bool" ("_:_  _" [51, 51, 51] 50) where
  "s:x0     = (xNull)"
| "s:xSuc n = (a. x=Addr a  heap s a  None  s:get_field s a predn)"

lemma Nat_atleast_lupd [rule_format, simp]: 
 "s v::val. lupd(xy) s:v  n = (s:v  n)"
apply (induct n)
by  auto

lemma Nat_atleast_set_locs [rule_format, simp]: 
 "s v::val. set_locs l s:v  n = (s:v  n)"
apply (induct n)
by auto

lemma Nat_atleast_del_locs [rule_format, simp]: 
 "s v::val. del_locs s:v  n = (s:v  n)"
apply (induct n)
by auto

lemma Nat_atleast_NullD [rule_format]: "s:Null  n  False"
apply (induct n)
by auto

lemma Nat_atleast_pred_NullD [rule_format]: 
"Null = get_field s a pred  s:Addr a  n  n = 0"
apply (induct n)
by (auto dest: Nat_atleast_NullD)

lemma Nat_atleast_mono [rule_format]: 
"a. s:get_field s a pred  n  heap s a  None  s:Addr a  n"
apply (induct n)
by auto

lemma Nat_atleast_newC [rule_format]: 
  "heap s aa = None  v::val. s:v  n  hupd(aaobj) s:v  n"
apply (induct n)
apply  auto
apply  (case_tac "aa=a")
apply   auto
apply (tactic "smp_tac context 1 1")
apply (case_tac "aa=a")
apply  auto
done


subsection "Proof(s) using the Hoare logic"

theorem add_homomorph_lb: 
  "{}  {λs. s:s<This>  X  s:s<Par>  Y} Meth(Nat,add) {λs. s:s<Res>  X+Y}"
apply (rule hoare_ehoare.Meth) (* 1 *)
apply clarsimp
apply (rule_tac P'= "λZ s. (s:s<This>  fst Z  s:s<Par>  snd Z)  D=Nat" and 
        Q'= "λZ s. s:s<Res>  fst Z+snd Z" in AxSem.Conseq)
prefer 2
apply  (clarsimp simp add: init_locs_def init_vars_def)
apply rule
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule_tac P = "λZ Cm s. s:s<This>  fst Z  s:s<Par>  snd Z" in AxSem.Impl1)
apply (clarsimp simp add: body_def)  (* 4 *)
apply (rename_tac n m)
apply (rule_tac Q = "λv s. (s:s<This>  n  s:s<Par>  m)  
        (a. s<This> = Addr a  v = get_field s a pred)" in hoare_ehoare.Cond)
apply  (rule hoare_ehoare.FAcc)
apply  (rule eConseq1)
apply   (rule hoare_ehoare.LAcc)
apply  fast
apply auto
prefer 2
apply  (rule hoare_ehoare.LAss)
apply  (rule eConseq1)
apply   (rule hoare_ehoare.LAcc)
apply  (auto dest: Nat_atleast_pred_NullD)
apply (rule hoare_ehoare.LAss)
apply (rule_tac 
    Q = "λv   s. (m. n = Suc m  s:v  m)  s:s<Par>  m" and 
    R = "λT P s. (m. n = Suc m  s:T  m)  s:P   Suc m" 
    in hoare_ehoare.Call) (* 13 *)
apply   (rule hoare_ehoare.FAcc)
apply   (rule eConseq1)
apply    (rule hoare_ehoare.LAcc)
apply   clarify
apply   (drule sym, rotate_tac -1, frule (1) trans)
apply   simp
prefer 2
apply  clarsimp
apply  (rule hoare_ehoare.Meth) (* 17 *)
apply  clarsimp
apply  (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply  (rule AxSem.Conseq)
apply   rule
apply   (rule hoare_ehoare.Asm) (* 20 *)
apply   (rule_tac a = "((case n of 0  0 | Suc m  m),m+1)" in UN_I, rule+)
apply  (clarsimp split: nat.split_asm dest!: Nat_atleast_mono)
apply rule
apply (rule hoare_ehoare.Call) (* 21 *)
apply   (rule hoare_ehoare.LAcc)
apply  rule
apply  (rule hoare_ehoare.LAcc)
apply clarify
apply (rule hoare_ehoare.Meth) (* 24 *)
apply clarsimp
apply  (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rule hoare_ehoare.Comp) (* 26 *)
prefer 2
apply  (rule hoare_ehoare.FAss)
prefer 2
apply   rule
apply   (rule hoare_ehoare.LAcc)
apply  (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply  (rule hoare_ehoare.NewC) (* 32 *)
apply (auto dest!: new_AddrD elim: Nat_atleast_newC)
done


end