Theory TypeRel

(*  Title:      HOL/MicroJava/J/TypeRel.thy
    Author:     David von Oheimb, Technische Universitaet Muenchen
*)

section ‹Relations between Java Types›

theory TypeRel
imports Decl
begin

― ‹direct subclass, cf. 8.1.3›

inductive_set
  subcls1 :: "'c prog => (cname × cname) set"
  and subcls1' :: "'c prog => cname  cname => bool" ("_  _ ≺C1 _" [71,71,71] 70)
  for G :: "'c prog"
where
  "G  C ≺C1 D  (C, D)  subcls1 G"
  | subcls1I: "class G C = Some (D,rest); C  Object  G  C ≺C1 D"

abbreviation
  subcls  :: "'c prog => cname  cname => bool" ("_  _ ≼C _"  [71,71,71] 70)
  where "G  C ≼C D  (C, D)  (subcls1 G)*"

lemma subcls1D: 
  "GC≺C1D  C  Object  (fs ms. class G C = Some (D,fs,ms))"
apply (erule subcls1.cases)
apply auto
done

lemma subcls1_def2:
  "subcls1 P =
     (SIGMA C:{C. is_class P C}. {D. CObject  fst (the (class P C))=D})"
  by (auto simp add: is_class_def dest: subcls1D intro: subcls1I)

lemma finite_subcls1: "finite (subcls1 G)"
apply(simp add: subcls1_def2 del: mem_Sigma_iff)
apply(rule finite_SigmaI [OF finite_is_class])
apply(rule_tac B = "{fst (the (class G C))}" in finite_subset)
apply  auto
done

lemma subcls_is_class: "(C, D)  (subcls1 G)+   is_class G C"
apply (unfold is_class_def)
apply(erule trancl_trans_induct)
apply (auto dest!: subcls1D)
done

lemma subcls_is_class2 [rule_format (no_asm)]: 
  "GC≼C D  is_class G D  is_class G C"
apply (unfold is_class_def)
apply (erule rtrancl_induct)
apply  (drule_tac [2] subcls1D)
apply  auto
done

definition class_rec :: "'c prog  cname  'a 
    (cname  fdecl list  'c mdecl list  'a  'a)  'a" where
  "class_rec G == wfrec ((subcls1 G)¯)
    (λr C t f. case class G C of
         None  undefined
       | Some (D,fs,ms)  
           f C fs ms (if C = Object then t else r D t f))"

lemma class_rec_lemma:
  assumes wf: "wf ((subcls1 G)¯)"
    and cls: "class G C = Some (D, fs, ms)"
  shows "class_rec G C t f = f C fs ms (if C=Object then t else class_rec G D t f)"
  by (subst wfrec_def_adm[OF class_rec_def])
     (auto simp: assms adm_wf_def fun_eq_iff subcls1I split: option.split)

definition
  "wf_class G = wf ((subcls1 G)¯)"



text ‹Code generator setup›

code_pred 
  (modes: i  i  o  bool, i  i  i  bool)
  subcls1p 
  .

declare subcls1_def [code_pred_def]

code_pred 
  (modes: i  i × o  bool, i  i × i  bool)
  [inductify]
  subcls1 
  .

definition subcls' where "subcls' G = (subcls1p G)**"

code_pred
  (modes: i  i  i  bool, i  i  o  bool)
  [inductify]
  subcls'
  .

lemma subcls_conv_subcls' [code_unfold]:
  "(subcls1 G)* = {(C, D). subcls' G C D}"
by(simp add: subcls'_def subcls1_def rtrancl_def)

lemma class_rec_code [code]:
  "class_rec G C t f = 
  (if wf_class G then 
    (case class G C of
       None  class_rec G C t f
     | Some (D, fs, ms)  
       if C = Object then f Object fs ms t else f C fs ms (class_rec G D t f))
   else class_rec G C t f)"
apply(cases "wf_class G")
 apply(unfold class_rec_def wf_class_def)
 apply(subst wfrec, assumption)
 apply(cases "class G C")
  apply(simp add: wfrec)
 apply clarsimp
 apply(rename_tac D fs ms)
 apply(rule_tac f="f C fs ms" in arg_cong)
 apply(clarsimp simp add: cut_def)
 apply(blast intro: subcls1I)
apply simp
done

lemma wf_class_code [code]:
  "wf_class G  ((C, rest)  set G. C  Object  ¬ G  fst (the (class G C)) ≼C C)"
proof
  assume "wf_class G"
  hence wf: "wf (((subcls1 G)+)¯)" unfolding wf_class_def by(rule wf_converse_trancl)
  hence acyc: "acyclic ((subcls1 G)+)" by(auto dest: wf_acyclic)
  show "(C, rest)  set G. C  Object  ¬ G  fst (the (class G C)) ≼C C"
  proof(safe)
    fix C D fs ms
    assume "(C, D, fs, ms)  set G"
      and "C  Object"
      and subcls: "G  fst (the (class G C)) ≼C C"
    from (C, D, fs, ms)  set G obtain D' fs' ms'
      where "class": "class G C = Some (D', fs', ms')"
      unfolding class_def by(auto dest!: weak_map_of_SomeI)
    hence "G  C ≺C1 D'" using C  Object ..
    hence *: "(C, D')  (subcls1 G)+" ..
    also from * acyc have "C  D'" by(auto simp add: acyclic_def)
    with subcls "class" have "(D', C)  (subcls1 G)+" by(auto dest: rtranclD)
    finally show False using acyc by(auto simp add: acyclic_def)
  qed
next
  assume rhs[rule_format]: "(C, rest)  set G. C  Object  ¬ G  fst (the (class G C)) ≼C C"
  have "acyclic (subcls1 G)"
  proof(intro acyclicI strip notI)
    fix C
    assume "(C, C)  (subcls1 G)+"
    thus False
    proof(cases)
      case base
      then obtain rest where "class G C = Some (C, rest)"
        and "C  Object" by cases
      from class G C = Some (C, rest) have "(C, C, rest)  set G"
        unfolding class_def by(rule map_of_SomeD)
      with C  Object class G C = Some (C, rest)
      have "¬ G  C ≼C C" by(auto dest: rhs)
      thus False by simp
    next
      case (step D)
      from G  D ≺C1 C obtain rest where "class G D = Some (C, rest)"
        and "D  Object" by cases
      from class G D = Some (C, rest) have "(D, C, rest)  set G"
        unfolding class_def by(rule map_of_SomeD)
      with D  Object class G D = Some (C, rest)
      have "¬ G  C ≼C D" by(auto dest: rhs)
      moreover from (C, D)  (subcls1 G)+
      have "G  C ≼C D" by(rule trancl_into_rtrancl)
      ultimately show False by contradiction
    qed
  qed
  thus "wf_class G" unfolding wf_class_def
    by(rule finite_acyclic_wf_converse[OF finite_subcls1])
qed

definition "method" :: "'c prog × cname => (sig  cname × ty × 'c)"
  ― ‹methods of a class, with inheritance, overriding and hiding, cf. 8.4.6›
  where [code]: "method  λ(G,C). class_rec G C Map.empty (λC fs ms ts.
                           ts ++ map_of (map (λ(s,m). (s,(C,m))) ms))"

definition fields :: "'c prog × cname => ((vname × cname) × ty) list"
  ― ‹list of fields of a class, including inherited and hidden ones›
  where [code]: "fields  λ(G,C). class_rec G C [] (λC fs ms ts.
                           map (λ(fn,ft). ((fn,C),ft)) fs @ ts)"

definition field :: "'c prog × cname => (vname  cname × ty)"
  where [code]: "field == map_of o (map (λ((fn,fd),ft). (fn,(fd,ft)))) o fields"

lemma method_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)¯)|] ==>
  method (G,C) = (if C = Object then Map.empty else method (G,D)) ++  
  map_of (map (λ(s,m). (s,(C,m))) ms)"
apply (unfold method_def)
apply (simp split del: if_split)
apply (erule (1) class_rec_lemma [THEN trans])
apply auto
done

lemma fields_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)¯)|] ==>
 fields (G,C) = 
  map (λ(fn,ft). ((fn,C),ft)) fs @ (if C = Object then [] else fields (G,D))"
apply (unfold fields_def)
apply (simp split del: if_split)
apply (erule (1) class_rec_lemma [THEN trans])
apply auto
done

lemma field_fields: 
"field (G,C) fn = Some (fd, fT)  map_of (fields (G,C)) (fn, fd) = Some fT"
apply (unfold field_def)
apply (rule table_of_remap_SomeD)
apply simp
done


― ‹widening, viz. method invocation conversion,cf. 5.3 i.e. sort of syntactic subtyping›
inductive
  widen   :: "'c prog => [ty   , ty   ] => bool" ("_  _  _"   [71,71,71] 70)
  for G :: "'c prog"
where
  refl   [intro!, simp]:       "G      T  T"   ― ‹identity conv., cf. 5.1.1›
| subcls         : "GC≼C D ==> GClass C  Class D"
| null   [intro!]:             "G     NT  RefT R"

code_pred widen .

lemmas refl = HOL.refl

― ‹casting conversion, cf. 5.5 / 5.1.5›
― ‹left out casts on primitve types›
inductive
  cast    :: "'c prog => [ty   , ty   ] => bool" ("_  _ ≼? _"  [71,71,71] 70)
  for G :: "'c prog"
where
  widen:  "G C D ==> GC ≼? D"
| subcls: "G D≼C C ==> GClass C ≼? Class D"

lemma widen_PrimT_RefT [iff]: "(GPrimT pTRefT rT) = False"
apply (rule iffI)
apply (erule widen.cases)
apply auto
done

lemma widen_RefT: "GRefT RT ==> t. T=RefT t"
apply (ind_cases "GRefT RT")
apply auto
done

lemma widen_RefT2: "GSRefT R ==> t. S=RefT t"
apply (ind_cases "GSRefT R")
apply auto
done

lemma widen_Class: "GClass CT ==> D. T=Class D"
apply (ind_cases "GClass CT")
apply auto
done

lemma widen_Class_NullT [iff]: "(GClass CNT) = False"
apply (rule iffI)
apply (ind_cases "GClass CNT")
apply auto
done

lemma widen_Class_Class [iff]: "(GClass C Class D) = (GC≼C D)"
apply (rule iffI)
apply (ind_cases "GClass C  Class D")
apply (auto elim: widen.subcls)
done

lemma widen_NT_Class [simp]: "G  T  NT  G  T  Class D"
by (ind_cases "G  T  NT",  auto)

lemma cast_PrimT_RefT [iff]: "(GPrimT pT≼? RefT rT) = False"
apply (rule iffI)
apply (erule cast.cases)
apply auto
done

lemma cast_RefT: "G  C ≼? Class D   rT. C = RefT rT"
apply (erule cast.cases)
apply simp apply (erule widen.cases) 
apply auto
done

theorem widen_trans[trans]: "GSU; GUT  GST"
proof -
  assume "GSU" thus "T. GUT  GST"
  proof induct
    case (refl T T') thus "GTT'" .
  next
    case (subcls C D T)
    then obtain E where "T = Class E" by (blast dest: widen_Class)
    with subcls show "GClass CT" by auto
  next
    case (null R RT)
    then obtain rt where "RT = RefT rt" by (blast dest: widen_RefT)
    thus "GNTRT" by auto
  qed
qed

end