Theory Kildall

(*  Title:      HOL/MicroJava/DFA/Kildall.thy
    Author:     Tobias Nipkow, Gerwin Klein
    Copyright   2000 TUM
*)

section ‹Kildall's Algorithm \label{sec:Kildall}›

theory Kildall
imports SemilatAlg "HOL-Library.While_Combinator"
begin

primrec propa :: "'s binop  (nat × 's) list  's list  nat set  's list * nat set" where
  "propa f []      ss w = (ss,w)"
| "propa f (q'#qs) ss w = (let (q,t) = q';
                               u = t +_f ss!q;
                               w' = (if u = ss!q then w else insert q w)
                           in propa f qs (ss[q := u]) w')"

definition iter :: "'s binop  's step_type  's list  nat set  's list × nat set" where
  "iter f step ss w == while (%(ss,w). w  {})
       (%(ss,w). let p = SOME p. p  w
                 in propa f (step p (ss!p)) ss (w-{p}))
       (ss,w)"

definition unstables :: "'s ord  's step_type  's list  nat set" where
"unstables r step ss == {p. p < size ss  ¬stable r step ss p}"

definition kildall :: "'s ord  's binop  's step_type  's list  's list" where
"kildall r f step ss == fst(iter f step ss (unstables r step ss))"

primrec merges :: "'s binop  (nat × 's) list  's list  's list" where
  "merges f []      ss = ss"
| "merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))"


lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric]


lemma (in Semilat) nth_merges:
 "ss. p < length ss; ss  list n A; (p,t)set ps. p<n  tA  
  (merges f ps ss)!p = map snd [(p',t')  ps. p'=p] ++_f ss!p"
  (is "ss. _; _; ?steptype ps  ?P ss ps")
proof (induct ps)
  show "ss. ?P ss []" by simp

  fix ss p' ps'
  assume ss: "ss  list n A"
  assume l:  "p < length ss"
  assume "?steptype (p'#ps')"
  then obtain a b where
    p': "p'=(a,b)" and ab: "a<n" "bA" and ps': "?steptype ps'"
    by (cases p') auto
  assume "ss. p< length ss  ss  list n A  ?steptype ps'  ?P ss ps'"
  from this [OF _ _ ps'] have IH: "ss. ss  list n A  p < length ss  ?P ss ps'" .

  from ss ab
  have "ss[a := b +_f ss!a]  list n A" by (simp add: closedD)
  moreover
  from calculation l
  have "p < length (ss[a := b +_f ss!a])" by simp
  ultimately
  have "?P (ss[a := b +_f ss!a]) ps'" by (rule IH)
  with p' l
  show "?P ss (p'#ps')" by simp
qed


(** merges **)

lemma length_merges [simp]: "size(merges f ps ss) = size ss"
  by (induct ps arbitrary: ss) auto


lemma (in Semilat) merges_preserves_type_lemma:
shows "xs. xs  list n A  ((p,x)  set ps. p<n  xA)
           merges f ps xs  list n A"
apply (insert closedI)
apply (unfold closed_def)
apply (induct_tac ps)
 apply simp
apply clarsimp
done

lemma (in Semilat) merges_preserves_type [simp]:
 " xs  list n A; (p,x)  set ps. p<n  xA 
   merges f ps xs  list n A"
by (simp add: merges_preserves_type_lemma)

lemma (in Semilat) merges_incr_lemma:
 "xs. xs  list n A  ((p,x)set ps. p<size xs  x  A)  xs <=[r] merges f ps xs"
apply (induct_tac ps)
 apply simp
apply simp
apply clarify
apply (rule order_trans)
  apply simp
 apply (erule list_update_incr)
  apply simp
 apply simp
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
done

lemma (in Semilat) merges_incr:
 " xs  list n A; (p,x)set ps. p<size xs  x  A  
   xs <=[r] merges f ps xs"
  by (simp add: merges_incr_lemma)


lemma (in Semilat) merges_same_conv [rule_format]:
 "(xs. xs  list n A  ((p,x)set ps. p<size xs  xA)  
     (merges f ps xs = xs) = ((p,x)set ps. x <=_r xs!p))"
  apply (induct_tac ps)
   apply simp
  apply clarsimp
  apply (rename_tac p x ps xs)
  apply (rule iffI)
   apply (rule context_conjI)
    apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs")
     apply (drule_tac p = p in le_listD)
      apply simp
     apply simp
    apply (erule subst, rule merges_incr)
       apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
      apply clarify
      apply (rule conjI)
       apply simp
       apply (blast dest: boundedD)
      apply blast
   apply clarify
   apply (erule allE)
   apply (erule impE)
    apply assumption
   apply (drule bspec)
    apply assumption
   apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
   apply blast
  apply clarify 
  apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
  done


lemma (in Semilat) list_update_le_listI [rule_format]:
  "set xs <= A  set ys <= A  xs <=[r] ys  p < size xs   
   x <=_r ys!p  xA  xs[p := x +_f xs!p] <=[r] ys"
  apply(insert semilat)
  apply (unfold Listn.le_def lesub_def semilat_def)
  apply (simp add: list_all2_conv_all_nth nth_list_update)
  done

lemma (in Semilat) merges_pres_le_ub:
  assumes "set ts <= A" and "set ss <= A"
    and "(p,t)set ps. t <=_r ts!p  t  A  p < size ts" and "ss <=[r] ts"
  shows "merges f ps ss <=[r] ts"
proof -
  { fix t ts ps
    have
    "qs. set ts <= A; (p,t)set ps. t <=_r ts!p  t  A  p< size ts  
    set qs <= set ps   
    (ss. set ss <= A  ss <=[r] ts  merges f qs ss <=[r] ts)"
    apply (induct_tac qs)
     apply simp
    apply (simp (no_asm_simp))
    apply clarify
    apply (rotate_tac -2)
    apply simp
    apply (erule allE, erule impE, erule_tac [2] mp)
     apply (drule bspec, assumption)
     apply (simp add: closedD)
    apply (drule bspec, assumption)
    apply (simp add: list_update_le_listI)
    done 
  } note this [dest]
  
  from assms show ?thesis by blast
qed


(** propa **)


lemma decomp_propa:
  "ss w. ((q,t)set qs. q < size ss)  
   propa f qs ss w = 
   (merges f qs ss, {q. t. (q,t)set qs  t +_f ss!q  ss!q} Un w)"
  apply (induct qs)
   apply simp   
  apply (simp (no_asm))
  apply clarify  
  apply simp
  apply (rule conjI) 
   apply blast
  apply (simp add: nth_list_update)
  apply blast
  done 

(** iter **)

lemma (in Semilat) stable_pres_lemma:
shows "pres_type step n A; bounded step n; 
     ss  list n A; p  w; qw. q < n; 
     q. q < n  q  w  stable r step ss q; q < n; 
     s'. (q,s')  set (step p (ss ! p))  s' +_f ss ! q = ss ! q; 
     q  w  q = p  
   stable r step (merges f (step p (ss!p)) ss) q"
  apply (unfold stable_def)
  apply (subgoal_tac "s'. (q,s')  set (step p (ss!p))  s'  A")
   prefer 2
   apply clarify
   apply (erule pres_typeD)
    prefer 3 apply assumption
    apply (rule listE_nth_in)
     apply assumption
    apply simp
   apply simp
  apply simp
  apply clarify
  apply (subst nth_merges)
       apply simp
       apply (blast dest: boundedD)
      apply assumption
     apply clarify
     apply (rule conjI)
      apply (blast dest: boundedD)
     apply (erule pres_typeD)
       prefer 3 apply assumption
      apply simp
     apply simp
apply(subgoal_tac "q < length ss")
prefer 2 apply simp
  apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *)
apply assumption
  apply clarify
  apply (rule conjI)
   apply (blast dest: boundedD)
  apply (erule pres_typeD)
     prefer 3 apply assumption
    apply simp
   apply simp
  apply (drule_tac P = "λx. (a, b)  set (step q x)" in subst)
   apply assumption

 apply (simp add: plusplus_empty)
 apply (cases "q  w")
  apply simp
  apply (rule ub1')
     apply (rule semilat)
    apply clarify
    apply (rule pres_typeD)
       apply assumption
      prefer 3 apply assumption
     apply (blast intro: listE_nth_in dest: boundedD)
    apply (blast intro: pres_typeD dest: boundedD)
   apply (blast intro: listE_nth_in dest: boundedD)
  apply assumption

 apply simp
 apply (erule allE, erule impE, assumption, erule impE, assumption)
 apply (rule order_trans)
   apply simp
  defer
 apply (rule pp_ub2)(*
    apply assumption*)
   apply simp
   apply clarify
   apply simp
   apply (rule pres_typeD)
      apply assumption
     prefer 3 apply assumption
    apply (blast intro: listE_nth_in dest: boundedD)
   apply (blast intro: pres_typeD dest: boundedD)
  apply (blast intro: listE_nth_in dest: boundedD)
 apply blast
 done


lemma (in Semilat) merges_bounded_lemma:
 " mono r step n A; bounded step n; 
    (p',s')  set (step p (ss!p)). s'  A; ss  list n A; ts  list n A; p < n; 
    ss <=[r] ts; p. p < n  stable r step ts p  
   merges f (step p (ss!p)) ss <=[r] ts" 
  apply (unfold stable_def)
  apply (rule merges_pres_le_ub)
     apply simp
    apply simp
   prefer 2 apply assumption

  apply clarsimp
  apply (drule boundedD, assumption+)
  apply (erule allE, erule impE, assumption)
  apply (drule bspec, assumption)
  apply simp

  apply (drule monoD [of _ _ _ _ p "ss!p"  "ts!p"])
     apply assumption
    apply simp
   apply (simp add: le_listD)
  
  apply (drule lesub_step_typeD, assumption) 
  apply clarify
  apply (drule bspec, assumption)
  apply simp
  apply (blast intro: order_trans)
  done

lemma termination_lemma:
  assumes semilat: "semilat (A, r, f)"
  shows " ss  list n A; (q,t)set qs. q<n  tA; pw   
  ss <[r] merges f qs ss  
  merges f qs ss = ss  {q. t. (q,t)set qs  t +_f ss!q  ss!q} Un (w-{p}) < w" (is "PROP ?P")
proof -
  interpret Semilat A r f using assms by (rule Semilat.intro)
  show "PROP ?P" apply(insert semilat)
    apply (unfold lesssub_def)
    apply (simp (no_asm_simp) add: merges_incr)
    apply (rule impI)
    apply (rule merges_same_conv [THEN iffD1, elim_format]) 
    apply assumption+
    defer
    apply (rule sym, assumption)
    defer apply simp
    apply (subgoal_tac "q t. ¬((q, t)  set qs  t +_f ss ! q  ss ! q)")
    apply (blast elim: equalityE)
    apply clarsimp
    apply (drule bspec, assumption) 
    apply (drule bspec, assumption)
    apply clarsimp
    done
qed

lemma iter_properties[rule_format]:
  assumes semilat: "semilat (A, r, f)"
  shows " acc r ; pres_type step n A; mono r step n A;
     bounded step n; pw0. p < n; ss0  list n A;
     p<n. p  w0  stable r step ss0 p  
   iter f step ss0 w0 = (ss',w')
   
   ss'  list n A  stables r step ss'  ss0 <=[r] ss' 
   (tslist n A. ss0 <=[r] ts  stables r step ts  ss' <=[r] ts)"
  (is "PROP ?P")
proof -
  interpret Semilat A r f using assms by (rule Semilat.intro)
  show "PROP ?P" apply(insert semilat)
apply (unfold iter_def stables_def)
apply (rule_tac P = "%(ss,w).
 ss  list n A  (p<n. p  w  stable r step ss p)  ss0 <=[r] ss 
 (tslist n A. ss0 <=[r] ts  stables r step ts  ss <=[r] ts) 
 (pw. p < n)" and
 r = "{(ss',ss) . ss <[r] ss'} <*lex*> finite_psubset"
       in while_rule)

― ‹Invariant holds initially:›
apply (simp add:stables_def)

― ‹Invariant is preserved:›
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p  w)  w")
 prefer 2 apply (fast intro: someI)
apply(subgoal_tac "(q,t)  set (step (SOME p. p  w) (ss ! (SOME p. p  w))). q < length ss  t  A")
 prefer 2
 apply clarify
 apply (rule conjI)
  apply(clarsimp, blast dest!: boundedD)
 apply (erule pres_typeD)
  prefer 3
  apply assumption
  apply (erule listE_nth_in)
  apply simp
 apply simp
apply (subst decomp_propa)
 apply fast
apply simp
apply (rule conjI)
 apply (rule merges_preserves_type)
 apply blast
 apply clarify
 apply (rule conjI)
  apply(clarsimp, fast dest!: boundedD)
 apply (erule pres_typeD)
  prefer 3
  apply assumption
  apply (erule listE_nth_in)
  apply blast
 apply blast
apply (rule conjI)
 apply clarify
 apply (blast intro!: stable_pres_lemma)
apply (rule conjI)
 apply (blast intro!: merges_incr intro: le_list_trans)
apply (rule conjI)
 apply clarsimp
 apply (blast intro!: merges_bounded_lemma)
apply (blast dest!: boundedD)


― ‹Postcondition holds upon termination:›
apply(clarsimp simp add: stables_def split_paired_all)

― ‹Well-foundedness of the termination relation:›
apply (rule wf_lex_prod)
 apply (insert orderI [THEN acc_le_listI])
 apply (simp add: acc_def lesssub_def wfP_wf_eq [symmetric])
apply (rule wf_finite_psubset) 

― ‹Loop decreases along termination relation:›
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p  w)  w")
 prefer 2 apply (fast intro: someI)
apply(subgoal_tac "(q,t)  set (step (SOME p. p  w) (ss ! (SOME p. p  w))). q < length ss  t  A")
 prefer 2
 apply clarify
 apply (rule conjI)
  apply(clarsimp, blast dest!: boundedD)
 apply (erule pres_typeD)
  prefer 3
  apply assumption
  apply (erule listE_nth_in)
  apply blast
 apply blast
apply (subst decomp_propa)
 apply blast
apply clarify
apply (simp del: listE_length
    add: lex_prod_def finite_psubset_def 
         bounded_nat_set_is_finite)
apply (rule termination_lemma)
apply assumption+
defer
apply assumption
apply clarsimp
done

qed

lemma kildall_properties:
assumes semilat: "semilat (A, r, f)"
shows " acc r; pres_type step n A; mono r step n A;
     bounded step n; ss0  list n A  
  kildall r f step ss0  list n A 
  stables r step (kildall r f step ss0) 
  ss0 <=[r] kildall r f step ss0 
  (tslist n A. ss0 <=[r] ts  stables r step ts 
                 kildall r f step ss0 <=[r] ts)"
  (is "PROP ?P")
proof -
  interpret Semilat A r f using assms by (rule Semilat.intro)
  show "PROP ?P"
    apply (unfold kildall_def)
    apply(case_tac "iter f step ss0 (unstables r step ss0)")
    apply(simp)
    apply (rule iter_properties)
            apply (simp_all add: unstables_def stable_def)
    apply (rule semilat)
    done
qed

lemma is_bcv_kildall:
assumes semilat: "semilat (A, r, f)"
shows " acc r; top r T; pres_type step n A; bounded step n; mono r step n A 
   is_bcv r T step n A (kildall r f step)"
  (is "PROP ?P")
proof -
  interpret Semilat A r f using assms by (rule Semilat.intro)
  show "PROP ?P"
apply(unfold is_bcv_def wt_step_def)
apply(insert semilat kildall_properties[of A])
apply(simp add:stables_def)
apply clarify
apply(subgoal_tac "kildall r f step ss  list n A")
 prefer 2 apply (simp(no_asm_simp))
apply (rule iffI)
 apply (rule_tac x = "kildall r f step ss" in bexI) 
  apply (rule conjI)
   apply (blast)
  apply (simp  (no_asm_simp))
 apply(assumption)
apply clarify
apply(subgoal_tac "kildall r f step ss!p <=_r ts!p")
 apply simp
apply (blast intro!: le_listD less_lengthI)
done
qed

end