Theory HOL-Decision_Procs.Dense_Linear_Order

(*  Title       : HOL/Decision_Procs/Dense_Linear_Order.thy
    Author      : Amine Chaieb, TU Muenchen
*)

section ‹Dense linear order without endpoints
  and a quantifier elimination procedure in Ferrante and Rackoff style›

theory Dense_Linear_Order
imports Main
begin

ML_file ‹langford_data.ML›
ML_file ‹ferrante_rackoff_data.ML›

context linorder
begin

lemma less_not_permute[no_atp]: "¬ (x < y  y < x)"
  by (simp add: not_less linear)

lemma gather_simps[no_atp]:
  "(x. (y  L. y < x)  (y  U. x < y)  x < u  P x) 
    (x. (y  L. y < x)  (y  (insert u U). x < y)  P x)"
  "(x. (y  L. y < x)  (y  U. x < y)  l < x  P x) 
    (x. (y  (insert l L). y < x)  (y  U. x < y)  P x)"
  "(x. (y  L. y < x)  (y  U. x < y)  x < u) 
    (x. (y  L. y < x)  (y  (insert u U). x < y))"
  "(x. (y  L. y < x)  (y  U. x < y)  l < x) 
    (x. (y  (insert l L). y < x)  (y  U. x < y))"
  by auto

lemma gather_start [no_atp]: "(x. P x)  (x. (y  {}. y < x)  (y {}. x < y)  P x)"
  by simp

text‹Theorems for ∃z. ∀x. x < z ⟶ (P x ⟷ P-)›
lemma minf_lt[no_atp]:  "z . x. x < z  (x < t  True)" by auto
lemma minf_gt[no_atp]: "z . x. x < z   (t < x   False)"
  by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)

lemma minf_le[no_atp]: "z. x. x < z  (x  t  True)" by (auto simp add: less_le)
lemma minf_ge[no_atp]: "z. x. x < z  (t  x  False)"
  by (auto simp add: less_le not_less not_le)
lemma minf_eq[no_atp]: "z. x. x < z  (x = t  False)" by auto
lemma minf_neq[no_atp]: "z. x. x < z  (x  t  True)" by auto
lemma minf_P[no_atp]: "z. x. x < z  (P  P)" by blast

text‹Theorems for ∃z. ∀x. x < z ⟶ (P x ⟷ P+)›
lemma pinf_gt[no_atp]:  "z. x. z < x  (t < x  True)" by auto
lemma pinf_lt[no_atp]: "z. x. z < x   (x < t   False)"
  by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)

lemma pinf_ge[no_atp]: "z. x. z < x  (t  x  True)" by (auto simp add: less_le)
lemma pinf_le[no_atp]: "z. x. z < x  (x  t  False)"
  by (auto simp add: less_le not_less not_le)
lemma pinf_eq[no_atp]: "z. x. z < x  (x = t  False)" by auto
lemma pinf_neq[no_atp]: "z. x. z < x  (x  t  True)" by auto
lemma pinf_P[no_atp]: "z. x. z < x  (P  P)" by blast

lemma nmi_lt[no_atp]: "t  U  x. ¬True  x < t   (u U. u  x)" by auto
lemma nmi_gt[no_atp]: "t  U  x. ¬False  t < x   (u U. u  x)"
  by (auto simp add: le_less)
lemma  nmi_le[no_atp]: "t  U  x. ¬True  x t   (u U. u  x)" by auto
lemma  nmi_ge[no_atp]: "t  U  x. ¬False  t x   (u U. u  x)" by auto
lemma  nmi_eq[no_atp]: "t  U  x. ¬False   x = t   (u U. u  x)" by auto
lemma  nmi_neq[no_atp]: "t  U x. ¬True  x  t   (u U. u  x)" by auto
lemma  nmi_P[no_atp]: "x. ~P  P   (u U. u  x)" by auto
lemma  nmi_conj[no_atp]: "x. ¬P1'  P1 x   (u U. u  x) ;
  x. ¬P2'  P2 x   (u U. u  x) 
  x. ¬(P1'  P2')  (P1 x  P2 x)   (u U. u  x)" by auto
lemma  nmi_disj[no_atp]: "x. ¬P1'  P1 x   (u U. u  x) ;
  x. ¬P2'  P2 x   (u U. u  x) 
  x. ¬(P1'  P2')  (P1 x  P2 x)   (u U. u  x)" by auto

lemma  npi_lt[no_atp]: "t  U  x. ¬False   x < t   (u U. x  u)" by (auto simp add: le_less)
lemma  npi_gt[no_atp]: "t  U  x. ¬True  t < x   (u U. x  u)" by auto
lemma  npi_le[no_atp]: "t  U  x. ¬False   x  t   (u U. x  u)" by auto
lemma  npi_ge[no_atp]: "t  U  x. ¬True  t  x   (u U. x  u)" by auto
lemma  npi_eq[no_atp]: "t  U  x. ¬False   x = t   (u U. x  u)" by auto
lemma  npi_neq[no_atp]: "t  U  x. ¬True  x  t   (u U. x  u )" by auto
lemma  npi_P[no_atp]: "x. ~P  P   (u U. x  u)" by auto
lemma  npi_conj[no_atp]: "x. ¬P1'  P1 x   (u U. x  u) ;  x. ¬P2'  P2 x   (u U. x  u)
    x. ¬(P1'  P2')  (P1 x  P2 x)   (u U. x  u)" by auto
lemma  npi_disj[no_atp]: "x. ¬P1'  P1 x   (u U. x  u) ; x. ¬P2'  P2 x   (u U. x  u)
   x. ¬(P1'  P2')  (P1 x  P2 x)   (u U. x  u)" by auto

lemma lin_dense_lt[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  x < t  (y. l < y  y < u  y < t)"
proof clarsimp
  fix x l u y
  assume tU: "t  U"
    and noU: "t. l < t  t < u  t  U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "x < t"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t  y" by auto
  have False if H: "t < y"
  proof -
    from less_trans[OF lx px] less_trans[OF H yu] have "l < t  t < u"
      by simp
    with tU noU show ?thesis
      by auto
  qed
  then have "¬ t < y"
    by auto
  then have "y  t"
    by (simp add: not_less)
  then show "y < t"
    using tny by (simp add: less_le)
qed

lemma lin_dense_gt[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  t < x  (y. l < y  y < u  t < y)"
proof clarsimp
  fix x l u y
  assume tU: "t  U"
    and noU: "t. l < t  t < u  t  U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "t < x"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t  y" by auto
  have False if H: "y < t"
  proof -
    from less_trans[OF ly H] less_trans[OF px xu] have "l < t  t < u"
      by simp
    with tU noU show ?thesis
      by auto
  qed
  then have "¬ y < t"
    by auto
  then have "t  y"
    by (auto simp add: not_less)
  then show "t < y"
    using tny by (simp add: less_le)
qed

lemma lin_dense_le[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  x  t  (y. l < y  y < u  y  t)"
proof clarsimp
  fix x l u y
  assume tU: "t  U"
    and noU: "t. l < t  t < u  t  U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "x  t"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t  y" by auto
  have False if H: "t < y"
  proof -
    from less_le_trans[OF lx px] less_trans[OF H yu]
    have "l < t  t < u" by simp
    with tU noU show ?thesis by auto
  qed
  then have "¬ t < y" by auto
  then show "y  t" by (simp add: not_less)
qed

lemma lin_dense_ge[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  t  x  (y. l < y  y < u  t  y)"
proof clarsimp
  fix x l u y
  assume tU: "t  U"
    and noU: "t. l < t  t < u  t  U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "t  x"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t  y" by auto
  have False if H: "y < t"
  proof -
    from less_trans[OF ly H] le_less_trans[OF px xu]
    have "l < t  t < u" by simp
    with tU noU show ?thesis by auto
  qed
  then have "¬ y < t" by auto
  then show "t  y" by (simp add: not_less)
qed

lemma lin_dense_eq[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  x = t  (y. l < y  y < u  y = t)"
  by auto

lemma lin_dense_neq[no_atp]:
  "t  U 
    x l u. (t. l < t  t < u  t  U)  l < x  x < u  x  t  (y. l < y  y < u  y  t)"
  by auto

lemma lin_dense_P[no_atp]:
  "x l u. (t. l < t  t < u  t  U)  l < x  x < u  P  (y. l < y  y < u  P)"
  by auto

lemma lin_dense_conj[no_atp]:
  "x l u. (t. l < t  t < u  t  U)  l < x  x < u  P1 x
   (y. l < y  y < u  P1 y) ;
  x l u. (t. l < t  t < u  t  U)  l < x  x < u  P2 x
   (y. l < y  y < u  P2 y) 
  x l u. (t. l < t  t < u  t  U)  l < x  x < u  (P1 x  P2 x)
   (y. l < y  y < u  (P1 y  P2 y))"
  by blast
lemma lin_dense_disj[no_atp]:
  "x l u. (t. l < t  t < u  t  U)  l < x  x < u  P1 x
   (y. l < y  y < u  P1 y) ;
  x l u. (t. l < t  t < u  t  U)  l < x  x < u  P2 x
   (y. l < y  y < u  P2 y) 
  x l u. (t. l < t  t < u  t  U)  l < x  x < u  (P1 x  P2 x)
   (y. l < y  y < u  (P1 y  P2 y))"
  by blast

lemma npmibnd[no_atp]: "x. ¬ MP  P x  (u U. u  x); x. ¬PP  P x  (u U. x  u)
   x. ¬ MP  ¬PP  P x  (u U. u'  U. u  x  x  u')"
  by auto

lemma finite_set_intervals[no_atp]:
  assumes px: "P x"
    and lx: "l  x"
    and xu: "x  u"
    and linS: "l S"
    and uinS: "u  S"
    and fS:"finite S"
    and lS: "x S. l  x"
    and Su: "x S. x  u"
  shows "a  S. b  S. (y. a < y  y < b  y  S)  a  x  x  b  P x"
proof -
  let ?Mx = "{y. y S  y  x}"
  let ?xM = "{y. y S  x  y}"
  let ?a = "Max ?Mx"
  let ?b = "Min ?xM"
  have MxS: "?Mx  S"
    by blast
  then have fMx: "finite ?Mx"
    using fS finite_subset by auto
  from lx linS have linMx: "l  ?Mx"
    by blast
  then have Mxne: "?Mx  {}"
    by blast
  have xMS: "?xM  S"
    by blast
  then have fxM: "finite ?xM"
    using fS finite_subset by auto
  from xu uinS have linxM: "u  ?xM"
    by blast
  then have xMne: "?xM  {}"
    by blast
  have ax: "?a  x"
    using Mxne fMx by auto
  have xb: "x  ?b"
    using xMne fxM by auto
  have "?a  ?Mx"
    using Max_in[OF fMx Mxne] by simp
  then have ainS: "?a  S"
    using MxS by blast
  have "?b  ?xM"
    using Min_in[OF fxM xMne] by simp
  then have binS: "?b  S"
    using xMS by blast
  have noy: "y. ?a < y  y < ?b  y  S"
  proof clarsimp
    fix y
    assume ay: "?a < y" and yb: "y < ?b" and yS: "y  S"
    from yS have "y  ?Mx  y  ?xM"
      by (auto simp add: linear)
    then show False
    proof
      assume "y  ?Mx"
      then have "y  ?a"
        using Mxne fMx by auto
      with ay show ?thesis
        by (simp add: not_le[symmetric])
    next
      assume "y  ?xM"
      then have "?b  y"
        using xMne fxM by auto
      with yb show ?thesis
        by (simp add: not_le[symmetric])
    qed
  qed
  from ainS binS noy ax xb px show ?thesis
    by blast
qed

lemma finite_set_intervals2[no_atp]:
  assumes px: "P x"
    and lx: "l  x"
    and xu: "x  u"
    and linS: "l S"
    and uinS: "u  S"
    and fS: "finite S"
    and lS: "x S. l  x"
    and Su: "x S. x  u"
  shows "(s S. P s)  (a  S. b  S. (y. a < y  y < b  y  S)  a < x  x < b  P x)"
proof -
  from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su]
  obtain a and b where as: "a  S" and bs: "b  S"
    and noS: "y. a < y  y < b  y  S"
    and axb: "a  x  x  b  P x"
    by auto
  from axb have "x = a  x = b  (a < x  x < b)"
    by (auto simp add: le_less)
  then show ?thesis
    using px as bs noS by blast
qed

end


section ‹The classical QE after Langford for dense linear orders›

context unbounded_dense_linorder
begin

lemma interval_empty_iff: "{y. x < y  y < z} = {}  ¬ x < z"
  by (auto dest: dense)

lemma dlo_qe_bnds[no_atp]:
  assumes ne: "L  {}"
    and neU: "U  {}"
    and fL: "finite L"
    and fU: "finite U"
  shows "(x. (y  L. y < x)  (y  U. x < y))  (l  L. u  U. l < u)"
proof (simp only: atomize_eq, rule iffI)
  assume H: "x. (yL. y < x)  (yU. x < y)"
  then obtain x where xL: "yL. y < x" and xU: "yU. x < y"
    by blast
  have "l < u" if l: "l  L" and u: "u  U" for l u
  proof -
    have "l < x" using xL l by blast
    also have "x < u" using xU u by blast
    finally show ?thesis .
  qed
  then show "lL. uU. l < u" by blast
next
  assume H: "lL. uU. l < u"
  let ?ML = "Max L"
  let ?MU = "Min U"
  from fL ne have th1: "?ML  L" and th1': "lL. l  ?ML"
    by auto
  from fU neU have th2: "?MU  U" and th2': "uU. ?MU  u"
    by auto
  from th1 th2 H have "?ML < ?MU"
    by auto
  with dense obtain w where th3: "?ML < w" and th4: "w < ?MU"
    by blast
  from th3 th1' have "l  L. l < w"
    by auto
  moreover from th4 th2' have "u  U. w < u"
    by auto
  ultimately show "x. (yL. y < x)  (yU. x < y)"
    by auto
qed

lemma dlo_qe_noub[no_atp]:
  assumes ne: "L  {}"
    and fL: "finite L"
  shows "(x. (y  L. y < x)  (y  {}. x < y))  True"
proof (simp add: atomize_eq)
  from gt_ex[of "Max L"] obtain M where M: "Max L < M"
    by blast
  from ne fL have "x  L. x  Max L"
    by simp
  with M have "xL. x < M"
    by (auto intro: le_less_trans)
  then show "x. yL. y < x"
    by blast
qed

lemma dlo_qe_nolb[no_atp]:
  assumes ne: "U  {}"
    and fU: "finite U"
  shows "(x. (y  {}. y < x)  (y  U. x < y))  True"
proof (simp add: atomize_eq)
  from lt_ex[of "Min U"] obtain M where M: "M < Min U"
    by blast
  from ne fU have "x  U. Min U  x"
    by simp
  with M have "xU. M < x"
    by (auto intro: less_le_trans)
  then show "x. yU. x < y"
    by blast
qed

lemma exists_neq[no_atp]: "(x::'a). x  t" "(x::'a). t  x"
  using gt_ex[of t] by auto

lemmas dlo_simps[no_atp] = order_refl less_irrefl not_less not_le exists_neq
  le_less neq_iff linear less_not_permute

lemma axiom[no_atp]: "class.unbounded_dense_linorder (≤) (<)"
  by (rule unbounded_dense_linorder_axioms)
lemma atoms[no_atp]:
  shows "TERM (less :: 'a  _)"
    and "TERM (less_eq :: 'a  _)"
    and "TERM ((=) :: 'a  _)" .

declare axiom[langford qe: dlo_qe_bnds dlo_qe_nolb dlo_qe_noub gather: gather_start gather_simps atoms: atoms]
declare dlo_simps[langfordsimp]

end

(* FIXME: Move to HOL -- together with the conj_aci_rule in langford.ML *)
lemmas dnf[no_atp] = conj_disj_distribL conj_disj_distribR

lemmas weak_dnf_simps[no_atp] = simp_thms dnf

lemma nnf_simps[no_atp]:
  "(¬ (P  Q))  (¬ P  ¬ Q)"
  "(¬ (P  Q))  (¬ P  ¬ Q)"
  "(P  Q)  (¬ P  Q)"
  "(P  Q)  ((P  Q)  (¬ P  ¬ Q))"
  "(¬ ¬ P)  P"
  by blast+

lemma ex_distrib[no_atp]: "(x. P x  Q x)  ((x. P x)  (x. Q x))"
  by blast

lemmas dnf_simps[no_atp] = weak_dnf_simps nnf_simps ex_distrib

ML_file ‹langford.ML›
method_setup dlo = Scan.succeed (SIMPLE_METHOD' o Langford.dlo_tac) "Langford's algorithm for quantifier elimination in dense linear orders"


section ‹Contructive dense linear orders yield QE for linear arithmetic over ordered Fields›

text ‹Linear order without upper bounds›

locale linorder_stupid_syntax = linorder
begin

notation
  less_eq  ("'(⊑')") and
  less_eq  ("(_/  _)" [51, 51] 50) and
  less  ("'(⊏')") and
  less  ("(_/  _)"  [51, 51] 50)

end

locale linorder_no_ub = linorder_stupid_syntax +
  assumes gt_ex: "y. less x y"
begin

lemma ge_ex[no_atp]: "y. x  y"
  using gt_ex by auto

text ‹Theorems for ∃z. ∀x. z ⊏ x ⟶ (P x ⟷ P+)›
lemma pinf_conj[no_atp]:
  assumes ex1: "z1. x. z1  x  (P1 x  P1')"
    and ex2: "z2. x. z2  x  (P2 x  P2')"
  shows "z. x. z   x  ((P1 x  P2 x)  (P1'  P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "x. z1  x  (P1 x  P1')"
    and z2: "x. z2  x  (P2 x  P2')"
    by blast
  from gt_ex obtain z where z:"ord.max less_eq z1 z2  z"
    by blast
  from z have zz1: "z1  z" and zz2: "z2  z"
    by simp_all
  have "(P1 x  P2 x)  (P1'  P2')" if H: "z  x" for x
    using less_trans[OF zz1 H] less_trans[OF zz2 H] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed

lemma pinf_disj[no_atp]:
  assumes ex1: "z1. x. z1  x  (P1 x  P1')"
    and ex2: "z2. x. z2  x  (P2 x  P2')"
  shows "z. x. z   x  ((P1 x  P2 x)  (P1'  P2'))"
proof-
  from ex1 ex2 obtain z1 and z2
    where z1: "x. z1  x  (P1 x  P1')"
    and z2: "x. z2  x  (P2 x  P2')"
    by blast
  from gt_ex obtain z where z: "ord.max less_eq z1 z2  z"
    by blast
  from z have zz1: "z1  z" and zz2: "z2  z"
    by simp_all
  have "(P1 x  P2 x)  (P1'  P2')" if H: "z  x" for x
    using less_trans[OF zz1 H] less_trans[OF zz2 H] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed

lemma pinf_ex[no_atp]:
  assumes ex: "z. x. z  x  (P x  P1)"
    and p1: P1
  shows "x. P x"
proof -
  from ex obtain z where z: "x. z  x  (P x  P1)"
    by blast
  from gt_ex obtain x where x: "z  x"
    by blast
  from z x p1 show ?thesis
    by blast
qed

end

text ‹Linear order without upper bounds›

locale linorder_no_lb = linorder_stupid_syntax +
  assumes lt_ex: "y. less y x"
begin

lemma le_ex[no_atp]: "y. y  x"
  using lt_ex by auto


text ‹Theorems for ∃z. ∀x. x ⊏ z ⟶ (P x ⟷ P-)›
lemma minf_conj[no_atp]:
  assumes ex1: "z1. x. x  z1  (P1 x  P1')"
    and ex2: "z2. x. x  z2  (P2 x  P2')"
  shows "z. x. x   z  ((P1 x  P2 x)  (P1'  P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "x. x  z1  (P1 x  P1')"
    and z2: "x. x  z2  (P2 x  P2')"
    by blast
  from lt_ex obtain z where z: "z  ord.min less_eq z1 z2"
    by blast
  from z have zz1: "z  z1" and zz2: "z  z2"
    by simp_all
  have "(P1 x  P2 x)  (P1'  P2')" if H: "x  z" for x
    using less_trans[OF H zz1] less_trans[OF H zz2] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed

lemma minf_disj[no_atp]:
  assumes ex1: "z1. x. x  z1  (P1 x  P1')"
    and ex2: "z2. x. x  z2  (P2 x  P2')"
  shows "z. x. x   z  ((P1 x  P2 x)  (P1'  P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "x. x  z1  (P1 x  P1')"
    and z2: "x. x  z2  (P2 x  P2')"
    by blast
  from lt_ex obtain z where z: "z  ord.min less_eq z1 z2"
    by blast
  from z have zz1: "z  z1" and zz2: "z  z2"
    by simp_all
  have "(P1 x  P2 x)  (P1'  P2')" if H: "x  z" for x
    using less_trans[OF H zz1] less_trans[OF H zz2] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed

lemma minf_ex[no_atp]:
  assumes ex: "z. x. x  z  (P x  P1)"
    and p1: P1
  shows "x. P x"
proof -
  from ex obtain z where z: "x. x  z  (P x  P1)"
    by blast
  from lt_ex obtain x where x: "x  z"
    by blast
  from z x p1 show ?thesis
    by blast
qed

end


locale constr_dense_linorder = linorder_no_lb + linorder_no_ub +
  fixes between
  assumes between_less: "less x y  less x (between x y)  less (between x y) y"
    and between_same: "between x x = x"
begin

sublocale dlo: unbounded_dense_linorder
proof (unfold_locales, goal_cases)
  case (1 x y)
  then show ?case
    using between_less [of x y] by auto
next
  case 2
  then show ?case by (rule lt_ex)
next
  case 3
  then show ?case by (rule gt_ex)
qed

lemma rinf_U[no_atp]:
  assumes fU: "finite U"
    and lin_dense: "x l u. (t. l  t  t u  t  U)  l x  x  u  P x
       (y. l  y  y  u  P y )"
    and nmpiU: "x. ¬ MP  ¬PP  P x  (u U. u'  U. u  x  x  u')"
    and nmi: "¬ MP"  and npi: "¬ PP"  and ex: "x.  P x"
  shows "u U. u'  U. P (between u u')"
proof -
  from ex obtain x where px: "P x"
    by blast
  from px nmi npi nmpiU have "u U. u'  U. u  x  x  u'"
    by auto
  then obtain u and u' where uU: "u U" and uU': "u'  U" and ux: "u  x" and xu': "x  u'"
    by auto
  from uU have Une: "U  {}"
    by auto
  let ?l = "linorder.Min less_eq U"
  let ?u = "linorder.Max less_eq U"
  have linM: "?l  U"
    using fU Une by simp
  have uinM: "?u  U"
    using fU Une by simp
  have lM: "t U. ?l  t"
    using Une fU by auto
  have Mu: "t U. t  ?u"
    using Une fU by auto
  have th: "?l  u"
    using uU Une lM by auto
  from order_trans[OF th ux] have lx: "?l  x" .
  have th: "u'  ?u"
    using uU' Une Mu by simp
  from order_trans[OF xu' th] have xu: "x  ?u" .
  from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu]
  consider u where "u  U" "P u" |
    t1 t2 where "t1  U" "t2  U" "y. t1  y  y  t2  y  U" "t1  x" "x  t2" "P x"
    by blast
  then show ?thesis
  proof cases
    case u: 1
    have "between u u = u" by (simp add: between_same)
    with u have "P (between u u)" by simp
    with u show ?thesis by blast
  next
    case 2
    note t1M = t1  U and t2M = t2 U
      and noM = y. t1  y  y  t2  y  U
      and t1x = t1  x and xt2 = x  t2
      and px = P x
    from less_trans[OF t1x xt2] have t1t2: "t1  t2" .
    let ?u = "between t1 t2"
    from between_less t1t2 have t1lu: "t1  ?u" and ut2: "?u  t2" by auto
    from lin_dense noM t1x xt2 px t1lu ut2 have "P ?u" by blast
    with t1M t2M show ?thesis by blast
  qed
qed

theorem fr_eq[no_atp]:
  assumes fU: "finite U"
    and lin_dense: "x l u. (t. l  t  t u  t  U)  l x  x  u  P x
      (y. l  y  y  u  P y )"
    and nmibnd: "x. ¬ MP  P x  (u U. u  x)"
    and npibnd: "x. ¬PP  P x  (u U. x  u)"
    and mi: "z. x. x  z  (P x = MP)"  and pi: "z. x. z  x  (P x = PP)"
  shows "(x. P x)  (MP  PP  (u  U. u' U. P (between u u')))"
  (is "_  (_  _  ?F)" is "?E  ?D")
proof -
  have "?E  ?D"
  proof
    show ?D if px: ?E
    proof -
      consider "MP  PP" | "¬ MP" "¬ PP" by blast
      then show ?thesis
      proof cases
        case 1
        then show ?thesis by blast
      next
        case 2
        from npmibnd[OF nmibnd npibnd]
        have nmpiU: "x. ¬ MP  ¬PP  P x  (u U. u'  U. u  x  x  u')" .
        from rinf_U[OF fU lin_dense nmpiU ¬ MP ¬ PP px] show ?thesis
          by blast
      qed
    qed
    show ?E if ?D
    proof -
      from that consider MP | PP | ?F by blast
      then show ?thesis
      proof cases
        case 1
        from minf_ex[OF mi this] show ?thesis .
      next
        case 2
        from pinf_ex[OF pi this] show ?thesis .
      next
        case 3
        then show ?thesis by blast
      qed
    qed
  qed
  then show "?E  ?D" by simp
qed

lemmas minf_thms[no_atp] = minf_conj minf_disj minf_eq minf_neq minf_lt minf_le minf_gt minf_ge minf_P
lemmas pinf_thms[no_atp] = pinf_conj pinf_disj pinf_eq pinf_neq pinf_lt pinf_le pinf_gt pinf_ge pinf_P

lemmas nmi_thms[no_atp] = nmi_conj nmi_disj nmi_eq nmi_neq nmi_lt nmi_le nmi_gt nmi_ge nmi_P
lemmas npi_thms[no_atp] = npi_conj npi_disj npi_eq npi_neq npi_lt npi_le npi_gt npi_ge npi_P
lemmas lin_dense_thms[no_atp] = lin_dense_conj lin_dense_disj lin_dense_eq lin_dense_neq lin_dense_lt lin_dense_le lin_dense_gt lin_dense_ge lin_dense_P

lemma ferrack_axiom[no_atp]: "constr_dense_linorder less_eq less between"
  by (rule constr_dense_linorder_axioms)

lemma atoms[no_atp]:
  shows "TERM (less :: 'a  _)"
    and "TERM (less_eq :: 'a  _)"
    and "TERM ((=) :: 'a  _)" .

declare ferrack_axiom [ferrack minf: minf_thms pinf: pinf_thms
    nmi: nmi_thms npi: npi_thms lindense:
    lin_dense_thms qe: fr_eq atoms: atoms]

declaration let
  fun simps phi = map (Morphism.thm phi) [@{thm "not_less"}, @{thm "not_le"}]
  fun generic_whatis phi =
    let
      val [lt, le] = map (Morphism.term phi) [term(⊏), term(⊑)]
      fun h x t =
        case Thm.term_of t of
          Const_HOL.eq _ for y z =>
            if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Eq
            else Ferrante_Rackoff_Data.Nox
       | Const_Not for ConstHOL.eq _ for y z =>
            if Thm.term_of x aconv y then Ferrante_Rackoff_Data.NEq
            else Ferrante_Rackoff_Data.Nox
       | b$y$z => if Term.could_unify (b, lt) then
                     if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Lt
                     else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Gt
                     else Ferrante_Rackoff_Data.Nox
                 else if Term.could_unify (b, le) then
                     if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Le
                     else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Ge
                     else Ferrante_Rackoff_Data.Nox
                 else Ferrante_Rackoff_Data.Nox
       | _ => Ferrante_Rackoff_Data.Nox
  in h end
  fun ss phi ctxt =
    simpset_of (put_simpset HOL_ss ctxt addsimps (simps phi))
in
  Ferrante_Rackoff_Data.funs  @{thm "ferrack_axiom"}
    {isolate_conv = K (K (K Thm.reflexive)), whatis = generic_whatis, simpset = ss}
end

end

ML_file ‹ferrante_rackoff.ML›

method_setup ferrack = Scan.succeed (SIMPLE_METHOD' o FerranteRackoff.dlo_tac) "Ferrante and Rackoff's algorithm for quantifier elimination in dense linear orders"


subsection ‹Ferrante and Rackoff algorithm over ordered fields›

lemma neg_prod_lt:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x < 0  x > 0"
proof -
  have "c * x < 0  0 / c < x"
    by (simp only: neg_divide_less_eq[OF c < 0] algebra_simps)
  also have "  0 < x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma pos_prod_lt:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x < 0  x < 0"
proof -
  have "c * x < 0  0 /c > x"
    by (simp only: pos_less_divide_eq[OF c > 0] algebra_simps)
  also have "  0 > x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma neg_prod_sum_lt:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x + t < 0  x > (- 1 / c) * t"
proof -
  have "c * x + t < 0  c * x < - t"
    by (subst less_iff_diff_less_0 [of "c * x" "- t"]) simp
  also have "  - t / c < x"
    by (simp only: neg_divide_less_eq[OF c < 0] algebra_simps)
  also have "  (- 1 / c) * t < x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma pos_prod_sum_lt:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x + t < 0  x < (- 1 / c) * t"
proof -
  have "c * x + t < 0  c * x < - t"
    by (subst less_iff_diff_less_0 [of "c * x" "- t"]) simp
  also have "  - t / c > x"
    by (simp only: pos_less_divide_eq[OF c > 0] algebra_simps)
  also have "  (- 1 / c) * t > x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma sum_lt:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t < 0  x < - t"
  using less_diff_eq[where a= x and b=t and c=0] by simp

lemma neg_prod_le:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x  0  x  0"
proof -
  have "c * x  0  0 / c  x"
    by (simp only: neg_divide_le_eq[OF c < 0] algebra_simps)
  also have "  0  x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma pos_prod_le:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x  0  x  0"
proof -
  have "c * x  0  0 / c  x"
    by (simp only: pos_le_divide_eq[OF c > 0] algebra_simps)
  also have "  0  x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma neg_prod_sum_le:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x + t  0  x  (- 1 / c) * t"
proof -
  have "c * x + t  0  c * x  -t"
    by (subst le_iff_diff_le_0 [of "c*x" "-t"]) simp
  also have "  - t / c  x"
    by (simp only: neg_divide_le_eq[OF c < 0] algebra_simps)
  also have "  (- 1 / c) * t  x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma pos_prod_sum_le:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x + t  0  x  (- 1 / c) * t"
proof -
  have "c * x + t  0  c * x  - t"
    by (subst le_iff_diff_le_0 [of "c*x" "-t"]) simp
  also have "  - t / c  x"
    by (simp only: pos_le_divide_eq[OF c > 0] algebra_simps)
  also have "  (- 1 / c) * t  x" by simp
  finally show "PROP ?thesis" by simp
qed

lemma sum_le:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t  0  x  - t"
  using le_diff_eq[where a= x and b=t and c=0] by simp

lemma nz_prod_eq:
  fixes c :: "'a::linordered_field"
  assumes "c  0"
  shows "c * x = 0  x = 0"
  using assms by simp

lemma nz_prod_sum_eq:
  fixes c :: "'a::linordered_field"
  assumes "c  0"
  shows "c * x + t = 0  x = (- 1/c) * t"
proof -
  have "c * x + t = 0  c * x = - t"
    by (subst eq_iff_diff_eq_0 [of "c*x" "-t"]) simp
  also have "  x = - t / c"
    by (simp only: nonzero_eq_divide_eq[OF c  0] algebra_simps)
  finally show "PROP ?thesis" by simp
qed

lemma sum_eq:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t = 0  x = - t"
  using eq_diff_eq[where a= x and b=t and c=0] by simp

interpretation class_dense_linordered_field: constr_dense_linorder
  "(≤)" "(<)" "λx y. 1/2 * ((x::'a::linordered_field) + y)"
  by unfold_locales (dlo, dlo, auto)

declaration let
  fun earlier [] _ = false
    | earlier (h::t) (x, y) =
        if h aconvc y then false else if h aconvc x then true else earlier t (x, y);

  fun earlier_ord vs (x, y) =
    if x aconvc y then EQUAL
    else if earlier vs (x, y) then LESS
    else GREATER;

fun dest_frac ct =
  case Thm.term_of ct of
    Const_Rings.divide _ for a b =>
      Rat.make (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
  | Const_inverse _ for a => Rat.make(1, HOLogic.dest_number a |> snd)
  | t => Rat.of_int (snd (HOLogic.dest_number t))

fun whatis x ct = case Thm.term_of ct of
  Const_plus _ for Const_times _ for _ y _ =>
     if y aconv Thm.term_of x then ("c*x+t",[(funpow 2 Thm.dest_arg1) ct, Thm.dest_arg ct])
     else ("Nox",[])
| Const_plus _ for y _ =>
     if y aconv Thm.term_of x then ("x+t",[Thm.dest_arg ct])
     else ("Nox",[])
| Const_times _ for _ y =>
     if y aconv Thm.term_of x then ("c*x",[Thm.dest_arg1 ct])
     else ("Nox",[])
| t => if t aconv Thm.term_of x then ("x",[]) else ("Nox",[]);

fun xnormalize_conv ctxt [] ct = Thm.reflexive ct
  | xnormalize_conv ctxt (vs as (x::_)) ct =
   case Thm.term_of ct of
   Const_less _ for _ Const_zero_class.zero _ =>
    (case whatis x (Thm.dest_arg1 ct) of
    ("c*x+t",[c,t]) =>
       let
        val cr = dest_frac c
        val clt = Thm.dest_fun2 ct
        val cz = Thm.dest_arg ct
        val neg = cr < @0
        val cthp = Simplifier.rewrite ctxt
               (Thm.apply ctermTrueprop
                  (if neg then Thm.apply (Thm.apply clt c) cz
                    else Thm.apply (Thm.apply clt cz) c))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val th = Thm.implies_elim (Thm.instantiate' [SOME (Thm.ctyp_of_cterm x)] (map SOME [c,x,t])
             (if neg then @{thm neg_prod_sum_lt} else @{thm pos_prod_sum_lt})) cth
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
                   (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
      in rth end
    | ("x+t",[t]) =>
       let
        val T = Thm.ctyp_of_cterm x
        val th = Thm.instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_lt"}
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
       in  rth end
    | ("c*x",[c]) =>
       let
        val cr = dest_frac c
        val clt = Thm.dest_fun2 ct
        val cz = Thm.dest_arg ct
        val neg = cr < @0
        val cthp = Simplifier.rewrite ctxt
               (Thm.apply ctermTrueprop
                  (if neg then Thm.apply (Thm.apply clt c) cz
                    else Thm.apply (Thm.apply clt cz) c))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val th = Thm.implies_elim (Thm.instantiate' [SOME (Thm.ctyp_of_cterm x)] (map SOME [c,x])
             (if neg then @{thm neg_prod_lt} else @{thm pos_prod_lt})) cth
        val rth = th
      in rth end
    | _ => Thm.reflexive ct)


|  Const_less_eq _ for _ Const_zero_class.zero _ =>
   (case whatis x (Thm.dest_arg1 ct) of
    ("c*x+t",[c,t]) =>
       let
        val T = Thm.typ_of_cterm x
        val cT = Thm.ctyp_of_cterm x
        val cr = dest_frac c
        val clt = Thm.cterm_of ctxt Constless T
        val cz = Thm.dest_arg ct
        val neg = cr < @0
        val cthp = Simplifier.rewrite ctxt
               (Thm.apply ctermTrueprop
                  (if neg then Thm.apply (Thm.apply clt c) cz
                    else Thm.apply (Thm.apply clt cz) c))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val th = Thm.implies_elim (Thm.instantiate' [SOME cT] (map SOME [c,x,t])
             (if neg then @{thm neg_prod_sum_le} else @{thm pos_prod_sum_le})) cth
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
                   (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
      in rth end
    | ("x+t",[t]) =>
       let
        val T = Thm.ctyp_of_cterm x
        val th = Thm.instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_le"}
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
       in  rth end
    | ("c*x",[c]) =>
       let
        val T = Thm.typ_of_cterm x
        val cT = Thm.ctyp_of_cterm x
        val cr = dest_frac c
        val clt = Thm.cterm_of ctxt Constless T
        val cz = Thm.dest_arg ct
        val neg = cr < @0
        val cthp = Simplifier.rewrite ctxt
               (Thm.apply ctermTrueprop
                  (if neg then Thm.apply (Thm.apply clt c) cz
                    else Thm.apply (Thm.apply clt cz) c))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val th = Thm.implies_elim (Thm.instantiate' [SOME (Thm.ctyp_of_cterm x)] (map SOME [c,x])
             (if neg then @{thm neg_prod_le} else @{thm pos_prod_le})) cth
        val rth = th
      in rth end
    | _ => Thm.reflexive ct)

|  Const_HOL.eq _ for _ Const_zero_class.zero _ =>
   (case whatis x (Thm.dest_arg1 ct) of
    ("c*x+t",[c,t]) =>
       let
        val T = Thm.ctyp_of_cterm x
        val cr = dest_frac c
        val ceq = Thm.dest_fun2 ct
        val cz = Thm.dest_arg ct
        val cthp = Simplifier.rewrite ctxt
            (Thm.apply ctermTrueprop
             (Thm.apply ctermNot (Thm.apply (Thm.apply ceq c) cz)))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val th = Thm.implies_elim
                 (Thm.instantiate' [SOME T] (map SOME [c,x,t]) @{thm nz_prod_sum_eq}) cth
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
                   (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
      in rth end
    | ("x+t",[t]) =>
       let
        val T = Thm.ctyp_of_cterm x
        val th = Thm.instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_eq"}
        val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv ctxt (earlier_ord vs)))) th
       in  rth end
    | ("c*x",[c]) =>
       let
        val T = Thm.ctyp_of_cterm x
        val cr = dest_frac c
        val ceq = Thm.dest_fun2 ct
        val cz = Thm.dest_arg ct
        val cthp = Simplifier.rewrite ctxt
            (Thm.apply ctermTrueprop
             (Thm.apply ctermNot (Thm.apply (Thm.apply ceq c) cz)))
        val cth = Thm.equal_elim (Thm.symmetric cthp) TrueI
        val rth = Thm.implies_elim
                 (Thm.instantiate' [SOME T] (map SOME [c,x]) @{thm nz_prod_eq}) cth
      in rth end
    | _ => Thm.reflexive ct);

local
  val less_iff_diff_less_0 = mk_meta_eq @{thm "less_iff_diff_less_0"}
  val le_iff_diff_le_0 = mk_meta_eq @{thm "le_iff_diff_le_0"}
  val eq_iff_diff_eq_0 = mk_meta_eq @{thm "eq_iff_diff_eq_0"}
  val ss = simpset_of context
in
fun field_isolate_conv phi ctxt vs ct = case Thm.term_of ct of
  Const_less _ for a b =>
   let val (ca,cb) = Thm.dest_binop ct
       val T = Thm.ctyp_of_cterm ca
       val th = Thm.instantiate' [SOME T] [SOME ca, SOME cb] less_iff_diff_less_0
       val nth = Conv.fconv_rule
         (Conv.arg_conv (Conv.arg1_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv (put_simpset ss ctxt) (earlier_ord vs)))) th
       val rth = Thm.transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth))
   in rth end
| Const_less_eq _ for a b =>
   let val (ca,cb) = Thm.dest_binop ct
       val T = Thm.ctyp_of_cterm ca
       val th = Thm.instantiate' [SOME T] [SOME ca, SOME cb] le_iff_diff_le_0
       val nth = Conv.fconv_rule
         (Conv.arg_conv (Conv.arg1_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv (put_simpset ss ctxt) (earlier_ord vs)))) th
       val rth = Thm.transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth))
   in rth end

| Const_HOL.eq _ for a b =>
   let val (ca,cb) = Thm.dest_binop ct
       val T = Thm.ctyp_of_cterm ca
       val th = Thm.instantiate' [SOME T] [SOME ca, SOME cb] eq_iff_diff_eq_0
       val nth = Conv.fconv_rule
         (Conv.arg_conv (Conv.arg1_conv
              (Semiring_Normalizer.semiring_normalize_ord_conv (put_simpset ss ctxt) (earlier_ord vs)))) th
       val rth = Thm.transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth))
   in rth end
| Const_Not for Const_HOL.eq _ for a b => Conv.arg_conv (field_isolate_conv phi ctxt vs) ct
| _ => Thm.reflexive ct
end;

fun classfield_whatis phi =
 let
  fun h x t =
   case Thm.term_of t of
     Const_HOL.eq _ for y z =>
      if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Eq
      else Ferrante_Rackoff_Data.Nox
   | Const_Not for Const_HOL.eq _ for y z =>
      if Thm.term_of x aconv y then Ferrante_Rackoff_Data.NEq
      else Ferrante_Rackoff_Data.Nox
   | Const_less _ for y z =>
       if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Lt
       else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Gt
       else Ferrante_Rackoff_Data.Nox
   | Const_less_eq _ for y z =>
       if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Le
       else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Ge
       else Ferrante_Rackoff_Data.Nox
   | _ => Ferrante_Rackoff_Data.Nox
 in h end;
fun class_field_ss phi ctxt =
  simpset_of (put_simpset HOL_basic_ss ctxt
    addsimps ([@{thm "linorder_not_less"}, @{thm "linorder_not_le"}])
    |> fold Splitter.add_split [@{thm "abs_split"}, @{thm "split_max"}, @{thm "split_min"}])

in
Ferrante_Rackoff_Data.funs @{thm "class_dense_linordered_field.ferrack_axiom"}
  {isolate_conv = field_isolate_conv, whatis = classfield_whatis, simpset = class_field_ss}
end

end