Theory Infinitely_Branching_Tree

(*  Title:      HOL/Induct/Infinitely_Branching_Tree.thy
    Author:     Stefan Berghofer, TU Muenchen
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section ‹Infinitely branching trees›

theory Infinitely_Branching_Tree
imports Main
begin

datatype 'a tree =
    Atom 'a
  | Branch "nat  'a tree"

primrec map_tree :: "('a  'b)  'a tree  'b tree"
  where
    "map_tree f (Atom a) = Atom (f a)"
  | "map_tree f (Branch ts) = Branch (λx. map_tree f (ts x))"

lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g  f) t"
  by (induct t) simp_all

primrec exists_tree :: "('a  bool)  'a tree  bool"
  where
    "exists_tree P (Atom a) = P a"
  | "exists_tree P (Branch ts) = (x. exists_tree P (ts x))"

lemma exists_map:
  "(x. P x  Q (f x)) 
    exists_tree P ts  exists_tree Q (map_tree f ts)"
  by (induct ts) auto


subsection‹The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.›

datatype brouwer = Zero | Succ brouwer | Lim "nat  brouwer"

text ‹Addition of ordinals›
primrec add :: "brouwer  brouwer  brouwer"
  where
    "add i Zero = i"
  | "add i (Succ j) = Succ (add i j)"
  | "add i (Lim f) = Lim (λn. add i (f n))"

lemma add_assoc: "add (add i j) k = add i (add j k)"
  by (induct k) auto

text ‹Multiplication of ordinals›
primrec mult :: "brouwer  brouwer  brouwer"
  where
    "mult i Zero = Zero"
  | "mult i (Succ j) = add (mult i j) i"
  | "mult i (Lim f) = Lim (λn. mult i (f n))"

lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)"
  by (induct k) (auto simp add: add_assoc)

lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)"
  by (induct k) (auto simp add: add_mult_distrib)

text ‹We could probably instantiate some axiomatic type classes and use
  the standard infix operators.›


subsection ‹A WF Ordering for The Brouwer ordinals (Michael Compton)›

text ‹To use the function package we need an ordering on the Brouwer
  ordinals.  Start with a predecessor relation and form its transitive
  closure.›

definition brouwer_pred :: "(brouwer × brouwer) set"
  where "brouwer_pred = (i. {(m, n). n = Succ m  (f. n = Lim f  m = f i)})"

definition brouwer_order :: "(brouwer × brouwer) set"
  where "brouwer_order = brouwer_pred+"

lemma wf_brouwer_pred: "wf brouwer_pred"
  unfolding wf_def brouwer_pred_def
  apply clarify
  apply (induct_tac x)
    apply blast+
  done

lemma wf_brouwer_order[simp]: "wf brouwer_order"
  unfolding brouwer_order_def
  by (rule wf_trancl[OF wf_brouwer_pred])

lemma [simp]: "(j, Succ j)  brouwer_order"
  by (auto simp add: brouwer_order_def brouwer_pred_def)

lemma [simp]: "(f n, Lim f)  brouwer_order"
  by (auto simp add: brouwer_order_def brouwer_pred_def)

text ‹Example of a general function›
function add2 :: "brouwer  brouwer  brouwer"
  where
    "add2 i Zero = i"
  | "add2 i (Succ j) = Succ (add2 i j)"
  | "add2 i (Lim f) = Lim (λn. add2 i (f n))"
  by pat_completeness auto
termination
  by (relation "inv_image brouwer_order snd") auto

lemma add2_assoc: "add2 (add2 i j) k = add2 i (add2 j k)"
  by (induct k) auto

end