Theory Hoare_Sound_Complete

theory Hoare_Sound_Complete
imports Hoare
(* Author: Tobias Nipkow *)

theory Hoare_Sound_Complete imports Hoare begin

subsection "Soundness"

lemma hoare_sound: "\<turnstile> {P}c{Q} ==> \<Turnstile> {P}c{Q}"
proof(induction rule: hoare.induct)
case (While P b c)
{ fix s t
have "(WHILE b DO c,s) => t ==> P s ==> P t ∧ ¬ bval b t"
proof(induction "WHILE b DO c" s t rule: big_step_induct)
case WhileFalse thus ?case by blast
next
case WhileTrue thus ?case
using While.IH unfolding hoare_valid_def by blast
qed
}
thus ?case unfolding hoare_valid_def by blast
qed (auto simp: hoare_valid_def)


subsection "Weakest Precondition"

definition wp :: "com => assn => assn" where
"wp c Q = (λs. ∀t. (c,s) => t --> Q t)"

lemma wp_SKIP[simp]: "wp SKIP Q = Q"
by (rule ext) (auto simp: wp_def)

lemma wp_Ass[simp]: "wp (x::=a) Q = (λs. Q(s[a/x]))"
by (rule ext) (auto simp: wp_def)

lemma wp_Seq[simp]: "wp (c1;;c2) Q = wp c1 (wp c2 Q)"
by (rule ext) (auto simp: wp_def)

lemma wp_If[simp]:
"wp (IF b THEN c1 ELSE c2) Q =
(λs. if bval b s then wp c1 Q s else wp c2 Q s)"

by (rule ext) (auto simp: wp_def)

lemma wp_While_If:
"wp (WHILE b DO c) Q s =
wp (IF b THEN c;;WHILE b DO c ELSE SKIP) Q s"

unfolding wp_def by (metis unfold_while)

lemma wp_While_True[simp]: "bval b s ==>
wp (WHILE b DO c) Q s = wp (c;; WHILE b DO c) Q s"

by(simp add: wp_While_If)

lemma wp_While_False[simp]: "¬ bval b s ==> wp (WHILE b DO c) Q s = Q s"
by(simp add: wp_While_If)


subsection "Completeness"

lemma wp_is_pre: "\<turnstile> {wp c Q} c {Q}"
proof(induction c arbitrary: Q)
case If thus ?case by(auto intro: conseq)
next
case (While b c)
let ?w = "WHILE b DO c"
show "\<turnstile> {wp ?w Q} ?w {Q}"
proof(rule While')
show "\<turnstile> {λs. wp ?w Q s ∧ bval b s} c {wp ?w Q}"
proof(rule strengthen_pre[OF _ While.IH])
show "∀s. wp ?w Q s ∧ bval b s --> wp c (wp ?w Q) s" by auto
qed
show "∀s. wp ?w Q s ∧ ¬ bval b s --> Q s" by auto
qed
qed auto

lemma hoare_complete: assumes "\<Turnstile> {P}c{Q}" shows "\<turnstile> {P}c{Q}"
proof(rule strengthen_pre)
show "∀s. P s --> wp c Q s" using assms
by (auto simp: hoare_valid_def wp_def)
show "\<turnstile> {wp c Q} c {Q}" by(rule wp_is_pre)
qed

end