Theory Finite_Reachable

theory Finite_Reachable
imports Small_Step
theory Finite_Reachable
imports Small_Step
begin

subsection "Finite number of reachable commands"

text{* This theory shows that in the small-step semantics one can only reach
a finite number of commands from any given command. Hence one can see the
command component of a small-step configuration as a combination of the
program to be executed and a pc. *}


definition reachable :: "com => com set" where
"reachable c = {c'. ∃s t. (c,s) ->* (c',t)}"

text{* Proofs need induction on the length of a small-step reduction sequence. *}

fun small_stepsn :: "com * state => nat => com * state => bool"
("_ ->'(_') _" [55,0,55] 55) where
"(cs ->(0) cs') = (cs' = cs)" |
"cs ->(Suc n) cs'' = (∃cs'. cs -> cs' ∧ cs' ->(n) cs'')"

lemma stepsn_if_star: "cs ->* cs' ==> ∃n. cs ->(n) cs'"
proof(induction rule: star.induct)
case refl show ?case by (metis small_stepsn.simps(1))
next
case step thus ?case by (metis small_stepsn.simps(2))
qed

lemma star_if_stepsn: "cs ->(n) cs' ==> cs ->* cs'"
by(induction n arbitrary: cs) (auto elim: star.step)

lemma SKIP_starD: "(SKIP, s) ->* (c,t) ==> c = SKIP"
by(induction SKIP s c t rule: star_induct) auto

lemma reachable_SKIP: "reachable SKIP = {SKIP}"
by(auto simp: reachable_def dest: SKIP_starD)


lemma Assign_starD: "(x::=a, s) ->* (c,t) ==> c ∈ {x::=a, SKIP}"
by (induction "x::=a" s c t rule: star_induct) (auto dest: SKIP_starD)

lemma reachable_Assign: "reachable (x::=a) = {x::=a, SKIP}"
by(auto simp: reachable_def dest:Assign_starD)


lemma Seq_stepsnD: "(c1;; c2, s) ->(n) (c', t) ==>
(∃c1' m. c' = c1';; c2 ∧ (c1, s) ->(m) (c1', t) ∧ m ≤ n) ∨
(∃s2 m1 m2. (c1,s) ->(m1) (SKIP,s2) ∧ (c2, s2) ->(m2) (c', t) ∧ m1+m2 < n)"

proof(induction n arbitrary: c1 c2 s)
case 0 thus ?case by auto
next
case (Suc n)
from Suc.prems obtain s' c12' where "(c1;;c2, s) -> (c12', s')"
and n: "(c12',s') ->(n) (c',t)" by auto
from this(1) show ?case
proof
assume "c1 = SKIP" "(c12', s') = (c2, s)"
hence "(c1,s) ->(0) (SKIP, s') ∧ (c2, s') ->(n) (c', t) ∧ 0 + n < Suc n"
using n by auto
thus ?case by blast
next
fix c1' s'' assume 1: "(c12', s') = (c1';; c2, s'')" "(c1, s) -> (c1', s'')"
hence n': "(c1';;c2,s') ->(n) (c',t)" using n by auto
from Suc.IH[OF n'] show ?case
proof
assume "∃c1'' m. c' = c1'';; c2 ∧ (c1', s') ->(m) (c1'', t) ∧ m ≤ n"
(is "∃ a b. ?P a b")
then obtain c1'' m where 2: "?P c1'' m" by blast
hence "c' = c1'';;c2 ∧ (c1, s) ->(Suc m) (c1'',t) ∧ Suc m ≤ Suc n"
using 1 by auto
thus ?case by blast
next
assume "∃s2 m1 m2. (c1',s') ->(m1) (SKIP,s2) ∧
(c2,s2) ->(m2) (c',t) ∧ m1+m2 < n"
(is "∃a b c. ?P a b c")
then obtain s2 m1 m2 where "?P s2 m1 m2" by blast
hence "(c1,s) ->(Suc m1) (SKIP,s2) ∧ (c2,s2) ->(m2) (c',t) ∧
Suc m1 + m2 < Suc n"
using 1 by auto
thus ?case by blast
qed
qed
qed

corollary Seq_starD: "(c1;; c2, s) ->* (c', t) ==>
(∃c1'. c' = c1';; c2 ∧ (c1, s) ->* (c1', t)) ∨
(∃s2. (c1,s) ->* (SKIP,s2) ∧ (c2, s2) ->* (c', t))"

by(metis Seq_stepsnD star_if_stepsn stepsn_if_star)

lemma reachable_Seq: "reachable (c1;;c2) ⊆
(λc1'. c1';;c2) ` reachable c1 ∪ reachable c2"

by(auto simp: reachable_def image_def dest!: Seq_starD)


lemma If_starD: "(IF b THEN c1 ELSE c2, s) ->* (c,t) ==>
c = IF b THEN c1 ELSE c2 ∨ (c1,s) ->* (c,t) ∨ (c2,s) ->* (c,t)"

by(induction "IF b THEN c1 ELSE c2" s c t rule: star_induct) auto

lemma reachable_If: "reachable (IF b THEN c1 ELSE c2) ⊆
{IF b THEN c1 ELSE c2} ∪ reachable c1 ∪ reachable c2"

by(auto simp: reachable_def dest!: If_starD)


lemma While_stepsnD: "(WHILE b DO c, s) ->(n) (c2,t) ==>
c2 ∈ {WHILE b DO c, IF b THEN c ;; WHILE b DO c ELSE SKIP, SKIP}
∨ (∃c1. c2 = c1 ;; WHILE b DO c ∧ (∃ s1 s2. (c,s1) ->* (c1,s2)))"

proof(induction n arbitrary: s rule: less_induct)
case (less n1)
show ?case
proof(cases n1)
case 0 thus ?thesis using less.prems by (simp)
next
case (Suc n2)
let ?w = "WHILE b DO c"
let ?iw = "IF b THEN c ;; ?w ELSE SKIP"
from Suc less.prems have n2: "(?iw,s) ->(n2) (c2,t)" by(auto elim!: WhileE)
show ?thesis
proof(cases n2)
case 0 thus ?thesis using n2 by auto
next
case (Suc n3)
then obtain iw' s' where "(?iw,s) -> (iw',s')"
and n3: "(iw',s') ->(n3) (c2,t)" using n2 by auto
from this(1)
show ?thesis
proof
assume "(iw', s') = (c;; WHILE b DO c, s)"
with n3 have "(c;;?w, s) ->(n3) (c2,t)" by auto
from Seq_stepsnD[OF this] show ?thesis
proof
assume "∃c1' m. c2 = c1';; ?w ∧ (c,s) ->(m) (c1', t) ∧ m ≤ n3"
thus ?thesis by (metis star_if_stepsn)
next
assume "∃s2 m1 m2. (c, s) ->(m1) (SKIP, s2) ∧
(WHILE b DO c, s2) ->(m2) (c2, t) ∧ m1 + m2 < n3"
(is "∃x y z. ?P x y z")
then obtain s2 m1 m2 where "?P s2 m1 m2" by blast
with `n2 = Suc n3` `n1 = Suc n2`have "m2 < n1" by arith
from less.IH[OF this] `?P s2 m1 m2` show ?thesis by blast
qed
next
assume "(iw', s') = (SKIP, s)"
thus ?thesis using star_if_stepsn[OF n3] by(auto dest!: SKIP_starD)
qed
qed
qed
qed

lemma reachable_While: "reachable (WHILE b DO c) ⊆
{WHILE b DO c, IF b THEN c ;; WHILE b DO c ELSE SKIP, SKIP} ∪
(λc'. c' ;; WHILE b DO c) ` reachable c"

apply(auto simp: reachable_def image_def)
by (metis While_stepsnD insertE singletonE stepsn_if_star)


theorem finite_reachable: "finite(reachable c)"
apply(induction c)
apply(auto simp: reachable_SKIP reachable_Assign
finite_subset[OF reachable_Seq] finite_subset[OF reachable_If]
finite_subset[OF reachable_While])
done


end