Theory C_like

theory C_like
imports Main
theory C_like imports Main begin

subsection "A C-like Language"

type_synonym state = "nat ⇒ nat"

datatype aexp = N nat | Deref aexp ("!") | Plus aexp aexp

fun aval :: "aexp ⇒ state ⇒ nat" where
"aval (N n) s = n" |
"aval (!a) s = s(aval a s)" |
"aval (Plus a1 a2) s = aval a1 s + aval a2 s"

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

primrec bval :: "bexp ⇒ state ⇒ bool" where
"bval (Bc v) _ = v" |
"bval (Not b) s = (¬ bval b s)" |
"bval (And b1 b2) s = (if bval b1 s then bval b2 s else False)" |
"bval (Less a1 a2) s = (aval a1 s < aval a2 s)"


datatype
  com = SKIP 
      | Assign aexp aexp         ("_ ::= _" [61, 61] 61)
      | New    aexp aexp
      | Seq    com  com          ("_;/ _"  [60, 61] 60)
      | If     bexp com com     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
      | While  bexp com         ("(WHILE _/ DO _)"  [0, 61] 61)

inductive
  big_step :: "com × state × nat ⇒ state × nat ⇒ bool"  (infix "⇒" 55)
where
Skip:    "(SKIP,sn) ⇒ sn" |
Assign:  "(lhs ::= a,s,n) ⇒ (s(aval lhs s := aval a s),n)" |
New:     "(New lhs a,s,n) ⇒ (s(aval lhs s := n), n+aval a s)"  |
Seq:    "⟦ (c1,sn1) ⇒ sn2;  (c2,sn2) ⇒ sn3 ⟧ ⟹
          (c1;c2, sn1) ⇒ sn3" |

IfTrue:  "⟦ bval b s;  (c1,s,n) ⇒ tn ⟧ ⟹
         (IF b THEN c1 ELSE c2, s,n) ⇒ tn" |
IfFalse: "⟦ ¬bval b s;  (c2,s,n) ⇒ tn ⟧ ⟹
         (IF b THEN c1 ELSE c2, s,n) ⇒ tn" |

WhileFalse: "¬bval b s ⟹ (WHILE b DO c,s,n) ⇒ (s,n)" |
WhileTrue:
  "⟦ bval b s1;  (c,s1,n) ⇒ sn2;  (WHILE b DO c, sn2) ⇒ sn3 ⟧ ⟹
   (WHILE b DO c, s1,n) ⇒ sn3"

code_pred big_step .

declare [[values_timeout = 3600]]

text{* Examples: *}

definition
"array_sum =
 WHILE Less (!(N 0)) (Plus (!(N 1)) (N 1))
 DO ( N 2 ::= Plus (!(N 2)) (!(!(N 0)));
      N 0 ::= Plus (!(N 0)) (N 1) )"

text {* To show the first n variables in a @{typ "nat ⇒ nat"} state: *}
definition 
  "list t n = map t [0 ..< n]"

values "{list t n |t n. (array_sum, nth[3,4,0,3,7],5) ⇒ (t,n)}"

definition
"linked_list_sum =
 WHILE Less (N 0) (!(N 0))
 DO ( N 1 ::= Plus(!(N 1)) (!(!(N 0)));
      N 0 ::= !(Plus(!(N 0))(N 1)) )"

values "{list t n |t n. (linked_list_sum, nth[4,0,3,0,7,2],6) ⇒ (t,n)}"

definition
"array_init =
 New (N 0) (!(N 1)); N 2 ::= !(N 0);
 WHILE Less (!(N 2)) (Plus (!(N 0)) (!(N 1)))
 DO ( !(N 2) ::= !(N 2);
      N 2 ::= Plus (!(N 2)) (N 1) )"

values "{list t n |t n. (array_init, nth[5,2,7],3) ⇒ (t,n)}"

definition
"linked_list_init =
 WHILE Less (!(N 1)) (!(N 0))
 DO ( New (N 3) (N 2);
      N 1 ::=  Plus (!(N 1)) (N 1);
      !(N 3) ::= !(N 1);
      Plus (!(N 3)) (N 1) ::= !(N 2);
      N 2 ::= !(N 3) )"

values "{list t n |t n. (linked_list_init, nth[2,0,0,0],4) ⇒ (t,n)}"

end